adget

survey

Stage 1 of Gadget examined a large swathe of
prior works related to the Gadget project. We
conducted an open-minded and thorough
survey of related work, from Smalltalk to
Minecraft. We surveyed 48 different systems,
producing one page visual distillations for
each.

Chaim Gingold e Wed Jul 05 2017

Purpose. The Gadget project combines cutting edge ideas from programming
languages and game design to invent new tools for novices learning to code as
well as expert users. It is predicated on the observation that some of the most
powerful ideas in the history of computers—from interface design to programming
languages—have come from making systems more tangible, alive, playful, and
accessible to children. Drawing on influences from Smalltalk to Minecraft, Gadget
seeks to build captivating play experiences that transform users into proficient and
creative computational thinkers. But Gadget is more than a playful tutorial; it aims
to transform the experience of programming itself.

Approach. The project is divided into four stages: survey, articulating design
values, prototyping, and design. In the first stage, we conducted an open-minded
and thorough survey of related work, from Smalltalk to Minecraft. We surveyed 48
different systems, producing one page visual distillations for each. In stage two, five
high level design values were distilled from the review: a quality of world-ness,
linked representation, tactile, personally meaningful, and directed and undirected
activity. In the third stage of the project, we will put these design values into action
by building and testing prototypes that push the envelope in programming
environment design. In the fourth stage we will summarize our learnings in the form
of a design for a new computational world.

Who. The Gadget project builds upon the combined background and expertise of
Dan Ingalls and Chaim Gingold. Among his many seminal contributions to
computing, Dan Ingalls has contributed to making programming more tangible,
alive, and open to creative improvisation (e.g. Squeak and Lively). Chaim Gingold
brings to the project expertise in designing simulations, play experiences, and
creative tools. Recent projects include using simulation toys as book illustrations
(Earth Primer), and investigations into diagrammatic representations of software
(Ph.D. dissertation).

survey

“You can be the gear, you can understand how it turns by projecting yourself
into its place and turning with it. It is this double relationship—both abstract
and sensory—that gives the gear the power to carry powerful mathematics
into the mind. In a terminology | shall develop in later chapters, the gear acts
here as a transitional object.”

“| fell in love with the gears.”

"My thesis could be summarized as: What the gears cannot do the computer
might. The computer is the Proteus of machines. Its essence is its universality,
its power to simulate. Because it can take on a thousand forms and can serve a
thousand functions, it can appeal to a thousand tastes. This book is the result
of my own attempts over the past decade to turn computers into instruments
flexible enough so that many children can each create for themselves
something like what the gears were for me.”

—Seymour Papert, Mindstorms (1980)

“1tell in

love with
the
gears.”

Mouse in the Maze

Mouse in the Maze is one of the oldest software toys. Using a light pen, players would design
mazes by erasing and making walls, place cheese, and place a mouse. The mouse would then
search for the cheese.

The mouse is perhaps the earliest computer virtual computer characters (predating Weizenbaum'’s
Eliza), and set the stage for the seminal computer game SpaceWar!

The mouse would could get tuckered out if it found no cheese, and needed to be fed to keep its
energy going. If cheese was inaccessible, the mouse—after exploring all available space—would
complain, “typing out an appropriate comment on the typewriter,” and be discouraged until fed

again (Ward 1959). Graetz describes a tipsy mouse in a variant mode with martinis not cheese
(Graetz 1981).

Probably inspired, in part, by Theseus, Shannon’s 1952 electromechanical maze solving mouse.
Theseus was an early effort to make problem solving machines—Shannon would later create one
of the first chess playing computers (Caissa).

Cellular Automata

Cellular automata are a simulation tradition whose roots lie in a synthesis of biology and
computation. John von Neumann wished to create a mathematical model of biological self-
reproduction, and following a suggestion by Stanistaw Ulam, settled upon a lattice of interacting
identical elements as a modeling substrate—not unlike the discrete models used for computer
weather simulations. (Turing, also, used a similar model for thinking about morphogenesis in 1952).

- g ———

COMPLETED PORTION OF T
CONSTRUCTED AUTOMATON
l : | el |]uucroum.s}'gac»;zgr |
A | A t A _f_“ 3 © Aﬁ:or':)s;anou :
- | i T B A -
| |]
| | (0,0) 3
lr'""""f‘_“""_ = [SRR EEREEEEEE)
" | | | = OIBPBBEEBEEEEEEEEERE]
& CONSTRUCTING ARM
1-, L l >
) A A | A { ¢
=] ! G | CONSTRUCTION CONTROL
l I g (NOT DRAWN TO SCALE)
! | _] o
S B e mn w wat S S O :
l ‘ | l © D S
! | | |, i
H A L, ; A :1' A X)S'Q'Brxoo"’)‘a-l,ﬁ-l'
I r | I ! s —
| 1)] | 5 TAPE CONTROL M
[I IR R J SRS S - & (NOT DRAWN TO SCALE) TTTTTTTT I ITI1N
= [1] TAPE

Space itself is a computational substrate, a mesh of identical interacting components. Higher level
structures, for the example the self-reproducing machine above, are said to embedded in the
cellular space. One of the most famous cellular automata is John Conway’s Game of Life, which
beautiful exemplifies the emergent potency of such systems.

LR

The Cl.ock

$%$%$%%%

The Toad

The highly observable nature of such systems, coupled with their representational plasticity, and
emergent potential, affords a high degree of player agency and a flexible variety of applications,
from biological reproduction and physics to game worlds.

Sketchpad

Sketchpad is a seminal program in the history of computing, combining and introducing a variety of
ideas: graphical man-machine communication (direct manipulation), instances and masters
(inheritance), and constraints. Sutherland writes that “Sketchpad is itself a model of the design
process,” as designers primarily work with and produce drawings, and the primary concern of design
is fashioning within constraints.

D DO

A. SIX SIDED FIGURE B. TO BE INSCRIBED IN CIRCLE

LD O

C. BY MOVING EACH CORNER D. ON TO CIRCLE

O O

E. MAKE SIDES EQUAL F. ERASE CIRCLE

G. CALL 7 HEXAGONS H. JOIN CORNERS

=402 =412 _-300 <329 -33

NN [3

@ @ — 77777777 Figure 7. Display of constraints.
Figure 16. Winking girl, “Nefertite,” and her com- Figure 17. Circuit diagrams. These are parts of the
ponent partsA large circuit mentioned in the text.
GO Masters can define attachment points, as well as simply be "constraint
\:}‘é}:} complexes” applicable to appropriately typed objects, allowing
A opERATION 8. PICTURE To libraries of smart objects to be recursively built up. A switch shows/

hides constraints as manipulable screen elements.

I\/Ierging—of pOintSl |ines, <+——CONSTRAINT MAKES

constraints, composite shapes— =2 PIGETS PRI
allows complex objects to be built <~ CONSTRANT ON
.]) SCALAR VALUE
up. By merging line endpoints SCALAR —+ %4
. polygons can be built up. Merging ~34r Y
" iR F SATRED a “constraint complex” to a shape
p p Figure 8. Three sets of digits displaying the same
P\ fem applies that operation to a shape. scalar vaius,

Sutherland, Ivan E. “Sketchpad a Man-Machine Graphical Communication System.” Transactions of the Society for
Computer Simulation 2, no. 5 (1963): R-3.

On-Line Graphical Specification of Computer Procedures

Sketchpad is for graphical representation of data, but OLGSCP is for graphical representation of
programs. Programs are represented as data-flow diagrams.

WRITTEN STATEMENT 3-23-6576

Z = AX[4+SQRT(Y)]
X = zx4/8%

THE FACT THAT THERE ARE TWO VALUES OF X IS EASY TO NEGLECT

GRAPHICAL STATEMENT

4

Many ingenious debugging features are offered. Variable values can be shown on the wires. Probes
and breakpoints can be inserted into the program.

Automatic connections, inferred by
proximity and data type, aid the
creation of complex programs.

A user created symbol/function,
and its definition.

Logo

Logo was intended to create a living world, a culture, in which a domain—in this case mathematics—
could be easily absorbed by young learners. Just as French is most easily learned by children in
France, Papert sought to create a microworld—mathland—in which children could easily learn math.

Early versions of Logo used tangible robots to perform programs— The turtle was inspired by
moving around and drawing pictures. Later, a virtual turtle on a William Walter's autonomous
computer screen was used. The turtle has “holding power” (it's fun), tortoise robots.

and affords “playing turtle” (identification). (Papert 1987)

Papert argued that linking the abstract and the sensory—for example performing a program or shape
—was a powerful way to link multiple representations. He called this body linkage “body syntonic.”
The turtle functions as a “transitional object” between the self and a domain (Papert 1980).

FD 58 RT 9@ FD 50 RT 120

¥
FD 58 RT 144

The turtle functions as a vital “body syntonic” link between a person and the domain. A classic
example is closing your eyes and walking in a circle to gain an understanding of how to make a circle.

GRAIL (Graphical Input Language)

In GRAIL, users draw graphical flow-charts in order to write software. It was used to make
sophisticated programs—the GRAIL system, for example, is written in itself. Users draw pictures, write
characters, and manipulate virtual objects. It used a tablet and CRT, and was developed at RAND

Corporation.

Programs can be compiled and run at full
speed, or stepped through with a debugging
interpreter that can run the program at
variable speeds.

X, ¥
cdnTRoL BITS

QUTPUTS

In¢~TRACK QUTRYTS
CHARACTER CQOE CHARACTER CQOE
GEQMETRIC PROPERTIES CHARACTER CENTER

UNCT oS FunCTiens
FEATURE EXTRACTION CHARACTER' IDENTIF JCATION
21CORNER » INTERP

FEATURES

F

G4
*DELTAS
AFNSS |
*OMM
CHAR. CENTER MRDIF ICATION
2RAZE

INK-TRACK GENERAT ION
2TRAVEC

CHARACTER SEPARATION ATOXY
*2ANG4 AVERTST
sCHECK CHAR. CENTER MROIF ICAT o
sCLOCK RAZE

*0QT |
CHARACTER JDENTIFICATION
*REC [

Once they have been drawn and recognized,
objects can be moved (top-right handle) and
resized (bottom-right handle).

Kay, Alan. “Doing with Images Makes Symbols.” presented at the Higher Education Marketing Group, Apple Computer, Inc.,

1987. (Video stills.)
Ellis, T. O., John F. Heafner, and W. L. Sibley. “The GRAIL Project: An Experiment in Man-Machine Communications.” Rand,

1969.
Ellis, Thomas O., John F. Heafner, and W. L. Sibley. “The GRAIL Language and Operations.” Rand, 1969.

Groner, Gabriel F. “Real-Time Recognition of Handprinted Text.” RAND, 1966.

TORTIS, The Button Box

Radia Perlman (1974)

TORTIS stands for Toddler's Own Recursive Turtle Interpreter System. System for introducing
programming to pre-literate children for Logo. Boxes with buttons on them are introduced,
graduating from puppeteering to programming. As proficiency increases, new boxes are introduced
that plug into and expand possible actions.

1. Action Box

e Forward, Back | @ '
oot orn ® © o 6 ®

® Pen Down, Up
e Light On, Off

2. Number Box

Push a number N S ~N

pefore an action, | (D@E@E®DE@10
and the action is '
done that many @ :
times. Stop

interrupts action.

3. Memory Box @ 4. Four Procedure
e Start remembering Box.
* Stop remembering * Remember and @
* Do it _ playback multiple .
e Forget it @ procedures; allows _
(Works in conjunction subprocedures.
with a display.) @
All boxes together. Memory displays for one and four memory boxes.
- - YFLLDW TGRERA
°l 00’000 BT 1 3 DoReD.
® ® 9¢ B¢ . '
@@ z. . R i 9¢ 3 e
00 % ol 1ot
(ORORONONORONUNORON® ‘
® 51 41
10 0O R ¢ 451
9¢ 1 10¢
19 . 18e¢
Images from Perlman (1976), which has some fantastic 5t 19 e
observations about what worked and didn’t work. Photos |
from http://cyberneticzoo.com/tag/radia-perlman/ oe — b YL

TORTIS, The Slot Machine

Radia Perlman (1976)

The slow machine design was intended to address some of the shortcomings in TORTIS—that the
commands are stored to memory “by the child, not by some magic that occurs when it somehow
enters a different mode.” (Perlman 1976). She had noted that children attended to the reactive display
in Button Box when storing things to memory, and used the memory mode as a way to achieve visual
effects on the display—not it's intended use at all. The Slot Machine made the memory elements
tangible. Cards allow the language to gradually grow in complexity—like the Button Box.

Since the display wasn’t needed to sow
program memory, Perlman used the screen
as the primary output.

- -
~ N
N ”
\

Some of the drawings shown here, (from
Perlman 1976), are speculative designs.

T rnAn
1T[2][3] |_a_| 9 [3]

Action and movement cards.

o=
o

l___—m__
-1

Program to “draw a square and toot,” and another to draw a spiral.

See also Morgado et al. (2006) Radia Perlman — A pioneer of young children computer programming.
Photogram from Morgado et al. (2006), other images from Perlman (1976).

SimKit

Adele Goldberg and the Smalltalk team (1976)

Smalltalk job shop simulation tool made for end-

users (executives). Each executive participant had a

private machine and tutor.

Sovunoluiugmy ¥ bwar
! willrgt Sl [ang I ing
NH - [XX X1] o | se——rrev—
T o — s X 3 = ot resTEL e s
SN RArpe—
¢ agm Mow
o mery
(PR |
1rmimg
"ﬁn-.
" Wahawilve
(s bt g Timte g "I - -
*OND O A & Crwhmamrnse
Lad¥ Lagnd o - L el - =
|| rviman
raslOg
reput)
! ot 1om
T g
| mraiC
Awm: P uing
a 3
1 & Sy - ~ 1
IR
hanl | I Aeaiea 1) ™ | bl
AL ﬁﬂlmLy Yul Fing (ryw
Ll e lmE i
| l. ML rl.-. Jen
feome e

An end-user simulation by a Xerox executive,
in SimKit.Total time including training: 3 hours

Notable features:

e Animating graphics.

e Smalltalk errors translated into meaningful
simulation events.

e Mouse tutorial via customization of text size for
readability on initiation.

e Custom class browser for four SimKit classes:
station, worker, job, report.

Information on SimKit is meager. Best descriptions are in:

3
.
5,
7] ’M Inpul -dniuh and initil | 5
azignmnats Lo, pies of pepers |; 1, U2
phmdlu)loo'«wyl_u..." o
minuter® Lty b RLy e
F it wac Papon nvw . atmet \'—x &
ManAt 0 L S P
whelula Y
Cnputchelule new pobpmrigl (==
<amtaat §. 3!) AN e
asuznmeats
<] (nputcheiule m data
A R L T Y X |

ﬁgu:eL A filtered browser for
manipulating simulations

- -Figure 2. The browser includes
icon editing

PEPORT 2: FraT pior,
1upers 3 Ihrauu 221
Viatet Ari2

Fraturs (37)

ONcerver probe at 3.02:
[Station: Aread

Nex, d b irc 2

N of §4s out: 0

Max QU= l=ugih: 0

Wkt Souise buyev erpva)
XClwd 00 ya 0

Figure 3. Example of the simulation kit
userinterface: menus, report window,

stations, workers and jobs

Kay, Alan. “The Early History of Smalltalk.” SIGPLAN Not. 28, no. 3 (March 1993): 69-95. doi:

10.1145/155360.155364.

Kay, Alan. “Learning Research Group Report. January - June 1978."

ThingLab: A Constraint-Oriented Simulation Laboratory

Poine et o s e e e e e = A MDY MO [Number S — e e e e o e e e
PrintingConverter fstructurc insernt NumberQperator FroperTy strucrure insert Ammeter
Quadrilnreral h Aelete MumberfPrinter Rectang delete Battery
Rectangle PROTOTUPY 5 US| ronstrain Plus Resistor proforype’s balues lconstcrain Elecericallead
TemperarureConverdas save fie merac Wt as save merge ElectricalNode
TextThing supclass tempiate eC1ang %“_'fr"r';l‘m subclass remplate fmate GMVeWM
TREMANAE 07 f oo e o e s e ¢ ¢ T — ter

. g pdiweexe _ ;f;';‘ hll':zumcomn TwoleadedObisct Resistor

es Therrnometer

Trangic Times v‘&fa&miwg‘“
VariableHe ighe Texe volemeter

vle

et —— e
Foint Srructre Pone inser | Geometric Ovject.

i eicee Cine e e 0
e ot Conscrain. Viipoinc e e | P
e e st fuc e ctonge s A ncrac i
e Thing Cubciass emplace e i Thing s
fange |[=——m-TEED e coxt Rectanale Trianaie o i Rectande -3.25 3.25
thitle L {Trange Bl O Trang 6,21 .

p / -3.21 -3.21
/ / 334 3.26 .26 1,33

e —— T] et — T T
o 2 insere (Geomerricpgect | [Funne nicone insere GeomerricObject

| e e
SN face [otcrtipe o buics | constrain [ipotrcting e e es |conserain ipoinetine
Rectande las sauie file merac ET— s s save file merae T— 5.0
T Thing sisinss tempiare | T m— i Lot TextThing iass tempuae | T CHm—C .
Tanale | |memm 2dic text Fectanae Trange . |m—mm 2dic texs Fectanae

S [Tange s R, |
y

Highlights

e Constraint based

¢ Bidirectional data flow (follows from constraints)
* Spatial

* Lends itself to multiple domains; a kit of kits.
Examples include electronics, structural
engineering (bridge), geometry (proof-ish), and
algebra (Farenheit-Celcius converter).

Boxer

Boxer is a programming environment that employs a comprehensive spatial metaphor for
everything: boxes.

——— v -
UNIVERSE- INPUT NUMBER LIBRARY| LENGTH------~ NUMBER- ----=-~ |
| | 100

| RIGHT 360/NUMBER |

|
| FORWARD LENGTH | |
|
|

PHYSICS----
1771

-~ - - - - " - - = - e - e - - - - . - -

In Boxer, “[o]bjects are their visual representation,” and behave according to “naive realist”
rules (like Rocky’s Boots). Boxer is predicated on the idea of “surrogates”—"replacement
machines” you think and predict with (for example a physical stack of things as a computational
stack.) The interface is built around editing and browsing, extending what diSessa thinks is one
of the most powerful ideas in Smalltalk, its browser, which allows you to dive into and inspect
anything.

Boxer is environment centric. It is composed of places with procedures and data—environments
that one can experiment in. Boxes can be data, procedures, graphics, and ports. Ports are
wormholes into boxes located elsewhere, a powerful idea that enables GUI windows as well as
scoping mechanics.

souARE-; ----------------------------------- BOX1-o-=mm-momom s om oo s oo oo ooo oo oo mooooooooeooosooosooee
| This is a box whose contents is the text |
| l | you are reading. |
P e e e e ———— | Here is an unnamed box: --------~--------em-eoooo- |

l REPEAT 4 SIDE I | | This box is the
I I FORWARD 100 | | : | last item on its line. | |
| | RIGHT 90 | | | Hers is a named subbox whose internal detail has |
' l | been suppressed: BOX2-------- |
| 1771117) |
————————————————————————————————————— I ecmenm—- |

Figure 3-1: A box with contained boxes.
Questions

* \What sense of world-ness is shared with something like Rocky’s Boots?

* |s “naive realist"—which sounds like Rocky’s Boots—another way of saying direct manipulation?
If not, why not? Is it more general? Specific? Orthogonal?

¢ Can this blend smoothly into a spreadsheet like representation? (grids of boxes)

Rocky’s Boots

LY B Y B Y B |

One of the many carnival-like game puzzles. Loose parts create a sandbox effect.
Design a circuit that recognizes blue crosses.
When boot is activated it kicks the shapes.

i
Wi HIIIHHHIHW

A spatial journey playfully introduces the
game.

As in HyperCard, even the explanatory
materials can be played with—taken apart,

o recombined, and transformed.
Highlights:

* Logic circuit construction set.

* Multiple ways to engage:

- As a spatial world to explore (like Robinett’s Adventure)
- As a sandbox—build and experiment
- As a game. Build circuits that satisfy recognition constraints.

¢ Gentle on-ramping; traverse spatial world to learn how to play.
* User interface is hampered by a lack of mouse (even more so in
emulation, perhaps.)

Pinball Construction Set

gg= &

@ oleop -

usedn?bmbng r‘n)a":dba“ grakmes The First
Wo
L tiope Software Toy

Highlights:

¢ Design and play simulated pinball machines.
e Established “construction set” and “software
toy” genres, settings the foundation for things
such as SimCity.

* First commercially available PARC/Apple
inspired graphical user interface.

* Pinball is a kind of computational machine.

* In addition to machine layout, you can tweak
the laws of physics, and map scoring and sound
relationships.

/
\
/
N

—
II..---"'""'

PDJ= &

d‘i-i

ljo =

Ak 4
444

E®LLunnNN =g

J7

Smith et al. (1994) describe it as
“programming by direct manipulation”—in
the domain of pinball games. “The elements
begin functioning as soon as they are
dropped into place.” The challenge they set
out is to “increase the generality without
losing the ease of use.”

Spreadsheet

The spreadsheet is credited with establishing the personal computer industry, transforming it
from a hobbyist pastime to an essential business tool. The spreadsheet has also been an
evocative object to “think with” (Turkle 1984) for computer scientists—e.g. Alan Kay (1984a;
1984b) and Terry Winograd (Winograd 1996).

—sum () SHEET
A B
—CELL
1 10
2 20
3 60 30
VALUE RULE
4 = S u m () VALUE
L FORMAT RULE
5 e
6
WINDOW
7 DISPLAY
c11 «<L>» TOTAL ! Untitled o
“ Al D Bad
Personal Budget
i 2. 3.

1
z
3
EIE
3
&
7
g
=l
5]
1
2
3
4
]
&
il
g
9
5]

At b ot

Visicalc on an Apple |I

¢ Data centric. Input/output always visible.

e Organize data in tabular form.

e Cells can only contain formulas, and show the
result of those formulas.

* Instant and incremental feedback.

* Spatial. References are spatial.

* Non-spatial references are hard; can't easily

refactor functions and variables out of the table.

¢ Graduated involvement and learning. Begin
by reading a sheet, then tinker with data and
templates, modify, and finally create your own.

82280

HE10 $2415 $3220 $4025 $6830 $6755 $7560 $8365 $970

Enter your income Enter your expenses. Enter a starting.

Information n the twoUse the Morthly balance nthe-

Income tables. ‘Expensos tabloor January column on
racurting expenses. ihe Annual Budget
able.

Saving

2
- IIIIIIIl
. 1 |
Yy
.

n
o
& ¥

& o

sa80

* Bridges program and data, bridging
programmer and user (Winograd 1996).

* Introduces a powerful new representation, a
“virtuality” (Nelson, Winograd) of a computing
data sheet; can be seen as domain specific
(Nardi). However, it is a highly abstract
abstraction pattern.

* As an externalized shareable cognitive
instrument, it engenders fluid sharing and
learning, becoming a communal practice (Nardi
1993).

Robot Odyssey 1

The inside of a robot. Go inside to connect The outS|de of your robots, which

logic to various ports: thrusters, grabbers, autonomously move around a living robot
battery, eye, antenna, bumpers, etc... city. They can be placed inside of one
another.
Inside a Robot
'ir il i %Il‘ i
{)IE“ ” Thruster Bumper I'ldl
Grabber Eye G NI[
'M) Antenna I”]'?
;[“ l Bumper Thruster "l'
;y}w, Thruster Bumper Wr'
‘ |‘ Battery Thruster - li
| MC i Switch x [l
umper Thruster
Highlights: it nnll”
® An elaborate extension of Rocky’s Boots
(Auerbach 2014).
e Extremely difficult. (Intended sequel never made.) Outside a Robot
* Adventure game structure. Overcome puzzles
that impede your journey. ATNEnnE o & - e
* World editor (I think)—tools for authoring the
world are included and exist inside of the game.
e Fully recursive: design and burn circuits; put Thruster —e o -'.'l <— Bumper
robots in one another. Flame o ¢
<— Grabber
Auerbach, “The Hardest Computer Game of All Time.” Slate. (2014) T

Steamer

Steamer is an “interactive inspectable simulation” of a steam ship. It is a dynamic and hierarchical
"dynamic graphical explanation” of a non-trivial domain—the propulsion system of a Navy ship,
modeled in about 100 different diagrams. It also includes an authoring tool for the diagrams.

System overview. Diagram of subsystem.

BASIC STEAM CYCLE

T

| mamv-m—l

W OUTLET

~COTWELL TEMP CONDENSER VACUUM

TLENZATE FLOW COl\OENSATE DISCH

Highlights (paraphrasing the article):
e Allows users to interact with a concrete BASIC STEAM CYCLE
version of the mental models experts use. :
e Internal state can be monitored and
manipulated.

® The authoring tool can be used to
create “mini-labs”

e “Presenters” discuss how things work,
including “procedures,” “mappings from
abstract abstract generic components Color images from http://pages.ucsd.edu/~ehutchins/Steamer.html
and procedures to particular instances.”

Hollan, Hutchins, and Weitzman (1984) STEAMER: An Interactive Inspectable Simulation-Based Training System.

Stella

Given how visual and diagrammatic Jay Forrester’s notation for system dynamics designs was, it
is perhaps unsurprising that an authoring tool like Stella came along. STELLA stands for Structural
Thinking Experiental Learning Laboratory with Animation. An explicit goal was to bring System
Dynamics to a broader audience by baking in expert knowledge—"model-creation heuristics”—
about the modeling domain in order to bring system dynamic model making to a broader

audience. Richmond thought that courses and apprenticeships were an inefficient way to spread
the practice.

Cat population

—=O= O£

Cat births },,g; deaths

Cat birth rate Cat death rate

It is interesting to note that Richmond was at Dartmouth, which also the home of another
attempt to bring programming to a broad audience: BASIC. In many ways, Stella is the logical
successor to Forrester’s notation system—carried forth into the era of interactive graphical
simulations and direction manipulation interfaces. It's also interesting that it, like Steamer, mark a

turn to thinking of expert systems as taking the form of user interfaces—more augmentation than
intelligence.

€ File Windows Run

SAMPLE TABLERU

| 1.0 I 0.0 0.17
name: [FPP_FOOD PER PERSON (FO0D/PER) | g;g g:z
ol 0.30 0.63
VARIABLES: i R F 40| B 0.4
VAR:;g;i: Q9808 F : 0.50 :- 0.82
FooD na o 0.60 0.87
. 0.70 0'92

o] (I . X
3] GRAPHICALOFUNCTIUN 0.80 0.94
. 0.90 0.95
|n.o | A A O A A 1.00 0.97

00 | FPP [1.0 (ox)

What if, as Alan Kay has suggested in an email to HARC, system dynamics models were animated
with particles flowing through the system?

Richmond, Barry. “STELLA: Software for Bringing System Dynamics to the Other 98%."” In Proceedings of the 1985

International Conference of the System Dynamics Society: 1985 International System Dynamics Conference, 706~
718, 1985.

Fabrik: A Visual Programming Environment

User frame

.2 .4. e TIFCK ‘;I 2
Graphic Trensformauons \=/ N umeric \ Suing - -
(TR Y=/ General Purpose &/ Craphic Objects

File name
pavtern maich

L abrikmemno
Library memo

memo w0 Scott File data
Product memo contents

To: Frank

From: Dan pen parts bin window]
Subject: Fabrik launch gataway...
Date: March 15, pasta (*v)
redraw
o8 show pin names
show vertex hames
set grid..,
set user frama

store
35t0rQ as..

stora and copy
fitaOut

Bution Suing List Peeker

(]

Scalable Image

Favbrik is & visual
programming

Slider I

15@0
22@118

| 26@6 | . cursorPoint
§@s0 13
yoin ¥ ymax o default
Conseepint Jo{eroun fo-|—fFoET {1y

Highlights
e Kit (Primitives, Navigable palette and program,
Connectable)
e “Concrete manipulation”:

* Example state always present.

* Spatial layout and connectivity. (“Visual
metaphor” “encompasses” “browsing, testing,
connecting” and “using.”)

e "User frame”—designate parts of the diagram
as external vs. internal.

SimCity

SimCity

r ® File Options Game Speed Disasters Windows * A
=] '| LinearCity | =]

1917 Feb

e geeesee

i BEEDE ST E

Playground

Fenton and Beck (1989), along with Kay, Marion, Beck and Wallace.

Part of the Vivarium project, Playground is an object-oriented language designed for children.
The idea was that children would imbue graphical objects with rules, “turning them loose in an
envorinment” and thus gain an appreciation for “complex dynamic systems.” Particular
inspiration is taken from biological systems, which seems to inform many of the examples.
Reading Fenton and Beck, the system design sounds like an important historical keyframe
between Smalltalk and Squeak, E-Toys, and Scratch.

" & File Edit Smalltalk Playground Player Window

shooting gallery

Set speed to 10.
move: Go to 30 @ 40.
Go to 250 @ 40.

When over shot.
Set costume to explosion.
Wait 2 ticks;Set costume to fish.

Move by 0 @ -30

Set costume to black box;
Move shot to tube center.
Set costume to white box.

mouse
click:

At first, the program appears to be a drawing
program—shape objects, bitmaps, text, and
aggregate objects are edited via direct
manipulation. This structure is recursive, as

objects can be opened up, revealing itself to be
another playfield containing agents.

Scruffy the Fish escapes QAN GSERN

Sl Sl | e

and hide if
If you see a shark! x‘& you can!

Higher Drive /
Centers ~o
Reproduction Feeding
Vertical \

Posture —]_D

__ Innate
Releasing

Angled Mechanisms
Posture
Red Belly D / \
Swollen I
Belly chase dance show

| nest

\ /

Sign Stimulus Fixed Action Patterns

/./

Figure 6: Stickleback Behavior

Given their biological impetus, and talk of
sign stimulus and drive centers, it's unclear
why they didn’t offer, as programming
representations, (a) behavior trees, and (b)
visual diagrams.

Programs are described in terms of causal
relations and an “English-like syntax.” The
authors also speculate that comic book
panels could be a good representation for
programs.

Fenton, Jay, and Kent Beck. “Playground: An Object-Oriented Simulation System with Agent Rules for Children of

All Ages.” ACM SIGPLAN Notices 24, no. 10 (1989): 123-137.

Kay, Alan. “Computers, Networks and Education.” Scientific American 265, no. 3 (1991): 138-148.

A t h t Interacting agents are embedded and interact within
gen S ee S cellular spaces called sheets. Agents are reactive to

direct manipulation and have autonomous behavior.

Worksheet: Untitled

[m
EH
|
L}

&
-1 Agent Sheets draws upon a similarly spirited broad field of
paradigms: artificial life, visual programming, “programmable
drawing tools,” “simulation environments”, games, cellular
automata, and “spreadsheet extensions.” Repenning draws upon
these shared characteristics: visual, spatial notation, dynamic, direct

manipulation, and incremental agency.

BTN 7]

Circuit

Water Flow Neural net

o

=] Worksheet: Untitled

[EO==——= ngentsheet: 9

EEEY)

Turing Machine

Agentsheel

13| . ‘ECI= ngentsheet: 1 =0

// //(f///??/

I3
o ,Q c
i

K2

‘x\“‘ .
a

s

Flow-chart style programming

t’.‘ 00 ©

0a 0o 09
=0a 0o 0

0 o0

E@A:—A:—

afg = =

0 00 00
0 00 00

Cwq aa

S
S~
N

» I wmmm/
Highlights: gngngg[gg[gg[gg[gg;ggigngng

¢ Kits (“agencies”) describe specific domains. One effect of “layered”
design is “roles”—end-users vs. scenario designers. Example domains in
thesis: Turing machines, circuits, flow, traffic, programs.

® Sheet is a cellular 2d space, but agents can be stacked up in a cell.

® Incremental refinement of art, behavior, etc...

e A highly generalize idea of flow is used for things like neural nets, flow The basic tool palette
charts, water flow, circuits, system dynamic style models, and traffic. is also a gallery,

* |t also supports ecological style spatial simulations. defined in simulation
e User interaction and agent communication is in the same terms.
representation. i.e. Anything can do to one another everything the user

can.

Repenning (1993) Agentsheets. Ph.D. thesis.

AlgoBlock

AlgoBlock is designed to facilitate collaborative, socially situated, and meaningful (authentic)
learning. They write that “learning is a process of enculturation through social interactions.” The
authors envision programming languages as “conversational artifacts” that scaffold “interactions
among learners.”

The primary point of departure from traditional languages—e.g. Logo—is reimagining the screen
based user interface, which affords interaction only by a few viewers, with a tangible block
interface. The program controls the behavior of an agent, an underwater submarine, in a
simulated microworld. Program blocks represent Logo inspired movement commands and
control structures. Some blocks have physical switches on them for parameter control.

Ease of use facilitates immersion in group activity rather
than the tool itself. Furthermore, it “promotes trail-and-
error,” which stimulates interaction. Tangibility affords
“simultaneous accessing” and “mutual monitoring”—
everyone can observe and interact with the shared
representation and activity. Tangibility also encourages
learners to engage in natural turn taking behavior.
Tangibility enables a repertoire of actions and coordinating
gestures from the physical world to come into play:
reaching out, pointing, looking at, turning towards, holding,
etc...

Suzuki and Kato, 1993. AlgoBlock: a Tangible Programming Language - a Tool for Collaborative Learning.

KidSim (later Cocoa, then Stagecast Creator)

In KidSim graphical simulations are created via
graphical rewrite rules, which also enables a
kind of programming by demonstration.

Figure 7. Defining a rule by demonstration

rigure 8. Dragging the monkey above the rock

Specifying the scope of a rewrite rule.

Move ’ from gH to Y

Move ’ from F to HH

Figure 14. Pictorial display of recorded actions

height Calculation
i B

Programming by demonstration extends to
using a calculator and dragging properties
around to define conditionals.

Smith, David C., Allen Cypher, and James Spohrer (1994)

The creators argue that most people can use
editor GUIs (e.g. paint programs), and can
give directions, but cannot program. Their
solution is to “get rid of the programming
language” in favor of a philosophy grounded
in GUI design:

e Visibility. Relevant information is visible;
causality is clear; modelessness.

* Copy and modify, not make from scratch.

* See and point, not remember and type.

e Concrete, not abstract.

* Familiar conceptual model. (“minimum
translation distance”).

They choose a symbolic simulation microworld
as a domain because it leads to knowing,
ownership, and motivation.

All objects are agents which have
appearances, properties (name value pairs),
and rules.

g > @ move right
O Rl — mov ton
oA NN

bounce off a rock to right

bounce off a rock to left

ORN- N

jump off a cliff

Buttons

One of the creators of KidSim, David

Smith, was also the creator of another
graphical programming environment:
Pygmalion.

Visual AgenTalk

Repenning and Ambach (1996)

This paper argues for an augmentation to visual programming they call tactile programming.
The idea here being that program definitions—including program fragments—are dynamic and
reactive things that can be run, manipulated, and shared.

~orksieat Tape Sinesper The authors describe tactile programming as
“Perception by manipulation”. You touch and
2! poke and prod to learn about—not just the
; f‘mU simulated world, but the code i"cself—as well
o as fragments of that code. In this, there are
Z echoes of Scratch, where you can click on
|| . code fragments to run them, and hover over
ST e =7 eXxpressions to see their values.
New!
Program fragments can be dropped onto
=TT objects. This also has the lovely feel, which
Move they hint at, of lambdas—programs as first
E class objects that can be sent as messages to
Tl === T other objects.
Sound §f Ho: v
Say|hello
(Al Data) [Select;‘ Datal n =

Figure 5: Commands can be dragged and dropped onto agents to
explore their functionality and to modify agents

The social dimension is also very important. Just as Scratch’s loose couplings between sprites
means greater ease of sharing, AgenTalk seeks to allow sharing at multiple levels of granularity,
from entire simulations to components such as objects and code fragments.

Ik Behavit /&

etscape: Uisual AgenTalk Behavior Browser etscape: Uisual AgenTalk Behavior Brows:

S8

Teke any of these depictions.
and dreg and drop them i an
‘Agentshees galery.

Electric Components

@y

Repenning and Ambach (1996) “Tactile programming”

C-jump

Igor Kholodov (1997)

A

.
-
30

|
{

L —

s

GG

.rh-

http://www.c-jump.com

AlgoBlocks (from McNerney 2000); color image
from Internet.

McNerney 2000

Processing

“Processing is a flexible software sketchbook and a language for learning how to code within the

context of the visual arts.” —processing.org

Processing is basically Java with a wrapper GUI and a simple and easy to learn set of APIs for

drawing, making sound, etc... It has proven to be extremely popular, and now has a Javascript/
web incarnation (p5.js).

X0

File Edit

Brownian | Processing 1.2.1

Sketch Tools Help

Brownian §
‘.‘A w
* Brownian motion.

int range

floatJ ax

void setup

for(int
ax[i]
ay[i]

¥

winid drawd

floatd ay =

0

i

Al

int num = 2000;

6;

new float [hum] ;
new Tloat [num] ;

size(200, 200);

=0; 1 < num; i+) {
width/2;
height/2;

frameRate{30);

Recording random movement as a continuous line.

Brownian

Why is Processing so successful? Some ideas:
e Targets one domain/community: visual arts.
* Focuses system design
* Motivational frame
* Programming is quickly gratifying: art,
animation, and interaction!
* Caters to learners and experts.
* Not a toy environment
* Easy to play around (“sketchbook”)
* Easy stuff is easy, hard stuff is possible
e Straightforward examples.
* APl exposes key computational and
graphical concepts as simple primitives.

Images credits: processing.org gallery and
http://www.realtimerendering.com.

EToys

(1997), built in Squeak

Squeak EToys is an authoring environment for children to think, learn, and create with. It
descends from the tradition of Logo, Smalltalk, HyperCard, and emphasizes kinesthetic learning
and play as gateways to learning powerful ideas. Scaffolding is intended to be done by teachers,
not peers (like Scratch) or games (like Rocky’s Boots), and the underlying motivation for
engagement is pedagogical, not self-expression (like Scratch).

D /) o EToys offers inspectors for seeing and
e/_g L REEEREE modifying things in visual and symbolic forms.
S ™ The inspectors are quite plastic: variables and
code can be dragged into the world. The
EToys environment itself can be probed and
modified with the same tools.

t (o) O [Feur] seripta (- fen pause) [£] (x|

Fleur tourne de §5 b

$598

537

0]
i oy utoriers | S (RESGESRIEER 33]

While the interface is powerful, it can be overwhelming and awkward to manipulate. It lacks
overviews, and there are multiple spatial/containment hierarchies—the visual world of objects,
and an internal hierarchy of objects—to keep clear.

car's ‘Cilﬂ' secs Mcolor Gallery of Example Projects

A typical curriculum from very basic to a feedback system may look like this:

= @
: ‘ ' al /"
s || 0| D || s || st | S
0 Frame-based animation can be used for physics analysis: Fun tutorials and demos:

o T[]

lations and games can also be made in Etoys:
s Tk 2 -
B o || 3 =
r rY 5 L, —1 1 ' o £
ravemuee | imerertiin, P ansuiy.
[] -

¥ (1
EToys is a spatial, visual world. Objects have locations, sizes, costumes, and headings. They can
draw like Logo turtles, and communicate via the framebuffer, exhibiting bitmap costumes and
sensing pixels in the framebuffer (SimCity’s maps functions similarly). Self-driving cars and Rocky’s
Boots style simulations are easy to make.

Programming is done with tiles. These are
(. e 0 .
rlol O Scriptl - [en pause| El X more expressive than Scratch, but

a - manipulation is clumsier. (e.g. attachment
Fleur tourne de /5) . .

combinatorics unclear, and they are hard to

Test Fleur. couleur vue couleur disassemble.) Code can live anywhere—in a
script, in the world, as a single line or as a
= script. Clicking “!" executes something,
Non |Fleurjavance de|y-5) offering a smooth ramp from puppeteering to
coding.

Oui Fleur avance de %5 I’

Scratch

Lifelong Kindergarten, MIT Media Lab (2004)

Scratch is tool for kids to make “personally meaningful” programs like “animated stories and
games”. It supports “self-directed learning through tinkering and collaboration with
peers.” (Maloney et al. 2004). At http://scratch.mit.edu, users can browse, play, comment on,

see inside, and remix projects.

Tile based programming

Game-like domain: sprites on a stage.

oJprrdy ST

Soirdil @ @ 3D File Edit Share Help
Motion Control

Looks Sensing

Sound Operators

Pen Variables

move §T) steps

turn & 1) degrees
move [steps

turn & D) degrees

if on edge, bounce
S
point towards

pick random o B =)
turn & (T degrees

g0 to x: @D v: @D

go to

glide §) secs to x: @) v: €FD)

wait) secs
=

change x by)

set x to ()

change y by)

set y to)
if on edge, bounce
[x position

B v position
@ direction

azimw

plantl1 plant2 plant3

Overviews: single window; short, browsable command set; color coded command tiles.

Liveness means code is always running. Tinkerability means even code fragments can be
run and experimented with—e.g. click any fragment to run it. There are no error messages;

tile shapes constrains combinations.

Running block outlined in
say BN for Bsecs

white.

running command
highlighted in yellow

(both when single stepping
and running)

repeat m

move steps

Images from Maloney et al. 2010

expression result shown on
hover

mouse y

Data is concrete
—put it on the
stage to see it;
data changes are
animated.

W soranas |
3

==

MineCraft
|

MineCraft

Dwarf Fortress

Dwarf Fortress

Dwarf Fortress

T e]
LOTEEDLC

ew Announcements

ok Around

o

e O C O 0L Do OB 0O

SODASERNND DL TE
2

i

20 A B aam e

o F

e

e
<

>

PaintCode

PixelCut (2012)

PaintCode is a production quality illustration program with parametric features that programmers
would love. You can design parametric illustrations and then export code (Swift, SVG, CSS) that

generates the art with parametric hooks.

B Controls For My App

Flip Horizontally Flip Verti

. Base Color

i0S Control Icons L Icon UlSwitch
+ Colors o ¥ lcon UIS;
@ shape Selected Color oo Browser
OErErs Icon UsegmentedContea Icon UBution e con Uistder -
@ Shape Gradient Top . N Brighter Color Darker Color
1 20% apply highlight) (50% apply shadk
@ Shape Gradient Bottom ® Rectangle
@ Shape Stroke Darker) 1 E —
) Rectangle
® o
visible on all displays
? Canvases Transparent Color Gradient
Radius 4 o b o (from Brighter a
Icon NsSegmentedContro con NSButton con NSSwitch con NsSider
@ 05 Control Blue ®
O jos ® Desaturated Color
o Library > l Inspector s hange satural
@ ios Control Green ® 8 8
+ Gradients o
+ Shadows. (o} v Transforms Shadow
+ Images o (from Desaturated,
Rotation o
+ Variables (o]
e ® | 05X » Objective-C # | 05X 10.7+ 3 | Retain/Release $ | Default Origin # & Export | Infinite & | — 800% + OE=S o o
Glors fosControlGreen = INSColor coloriithCalibratedRed: 0.251 green: 0.816 blues 0.31 alpha: 1;
oo n illustration or now colors
activeColor ®o . > Text
T are parametrically
isNotHighlighted @ ios Control Green 3 .
fabel pasisEE constraine gen erateaq.
nter 25! 7.5 u;
e setStrokel; > Stroke o .
gle 0 [rectanglePath setLinewidth: 11; Code View
[rectanglePath strokel;
isTopHighlighted o G
isBottomHighlighted
| //// Oval Drawing . Outer Fill No Shadow
isValid NSBezierPath ovalPath = [NSBezierPath bezierPathWithOvalInRect: NSMakeRect(11.5, 3.5, 8, 8)];

You can’t edit the code. The linked
representation can help you learn how to
program. Just flipping between output
languages (Swift, Objective C, etc...) is
educational. This is related to the idea of code
puppeteering—perform to see the
corresponding code generated.

StyleKit

-

O Fill
@ Stroke

+ Gradients o) @ Text Color

7

Colors and variables are threaded into object
properties—either on the canvas or through
the inspector.

In general, constraints in PaintCode are not
systemic (as in Apparatus), but special case per
feature; this is how it maintains a production
quality user interface that nonetheless captures
some powerful parametric features.

Visible on all displays

Radius 4

» Transforms

» Text

Spatial constraints can be established between
special frames and shapes (and vertices),
allowing visually adjustable parametric systems
to be built up.

d Darker

58

69

Lively Kernel
(2012)

* From SmallTalk: Inline Evaluate (and print) and Run. This idea has been rediscovered over and
over (e.g. Light Table).

code.org

Founded in 2013 by Hadi and Ali Partovi

N g

Code.org offers a massive library of programming courses made up of highly accessible—and visually
polished—progressions of block based programming puzzles. It accommodates K-12 via courses
geared towards specific ages and grade levels. Multiple thematic entry points, including loads of
licensed IP, try to accommodate all tastes. The emphasis is on learning to code to solve given puzzles,
rather than programming as creative expression (e.g. Scratch).

Your progress

Stage 1: Happy Maps Unplugged Activity o

Stage 2: Move it, Move it Unplugged Activity o

suzes e 0 O QOO OO
and drop
10,(M

©

1)(2)(3)(4)(s5)(6)(7)(8)(o
Stage 4: Maze: Sequence
©) () @ ©)

1 2 3 4 5 6 7 8 9

) (0 (2)
Stage 6: Real-life Algorithms: Urpluoged Actut
Plant a Seed nplugged Activity

Stage 5: Maze: Debugging

1 2 3 4 Bl 6 7 8 9

10) (1) (2) (1) (4) (5)
4 5 6 7 8 @

Stage 7: Bee: Sequence

1 2 3
Stage 8: Artist: Sequence I :

Stage 9: Building a Foundation Unplugged Activity @

Stage 10: Artist: Shapes
10

1 2 e 4 5 6 7 8 9
Stage Tt: Spelling Bee I : :

Stage 12: Getting Loopy Unplugged Activity @

(2)(:)(4)(s
Stage 13: Maze: Loops
©) () E

1 2 3 4 Bl 6 7 8 9

D000

6 7 8 9

Stage 14: Bee: Loops.

Newll
m @
| M—

MINECRAFY

Themed content.

@ Draw a rectangle to complete

Getting Loopy

This the through Students will
learn simple choreography, then be instructed to repeat It
Finished! Continue to next Download Video

Unplugged - Getting Loopy

MIRAL

CREATED ILUMINATE

| W

Create your own story! Move around t

£

Blocks
% . T type here)
4
1t hE
v
move E
ik
move ‘ s
4
"
v

set background

?I
<
»

set mood

play ‘)))

vanish *

Google’s open source
Blockly JavaScript library
is used.

Python Tutor

Philip Guo (2013)

Visualizes the data structures and execution of programs. Runs on the web, is embeddable, and

has achieved a degree of widespread use.

Python 2.7 Frames Objects

1 def listSum(numbers):
2 if not numbers:

Global frame

3 return © listSum L
else: myList \ _
5 (f, rest) = numbers
- 5 return f + listSum(rest) listSum
. numbers
8 myList = (1, (2, (3, None))) L
9 total = listSum(myList) f \1_
rest
Edit code L
line that has just executed)
) listSum
== next line to execute
— numbers \
U ¢ B
<Back Step 11 of 22 Forward >
rest L

Visualized using Python Tutor by Philip Guo

Python Tutor is a popular example of a multi-decade endeavor in computer science: program

function
listSum(numbers)
tuple tuple tuple
0 0 1 0 1
1| o] % 2 7% 3 | None

visualization system for pedagogic ends. It also overlaps with another effort called software
visualization. Even the Atari 2600 had a BASIC cartridge exhibiting such characteristics, made
by Warren Robinett, the creator of Adventure (2600) and Rocky’s Boots (Apple II).

Some observations | pulled from surveys by Sorva and others (see references below):

e User motivation and engagement is critical. Sorva et al. (2013) argues that a constructionist

orientation is desirable: learners are “makers who want to build things,” which “can be

harnessed for better learning.”

e Level of abstraction of representation is an important choice. Are algorithms or program
execution represented? Abstractions chosen reflect the aims of the system builders.

* Emphasis tends to be on generic representations. What if, instead, we allowed that special

cased visual designs, perhaps by the programmer, were worthwhile?

For good surveys, see:

e Sorva, Juha. Visual Program Simulation in Introductory Programming Education. Aalto University, 2012.
e Sorva, Juha, Ville Karavirta, and Lauri Malmi. “A Review of Generic Program Visualization Systems for Introductory

Programming Education.” ACM Transactions on Computing Education (TOCE) 13, no. 4 (2013): 15.

See also:

* Guo, Philip J. “Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.” In
Proceeding of the 44th ACM Technical Symposium on Computer Science Education, 579-584. ACM, 2013.

Nile Visualization

initial input

MakePolygon ()

Il o <
]

RoundPolygon ()

L)) eC
[] &
= oA
O
o 0.75,3), C: (2.3
TransformBeziers ()
[=

» Rasterize ()

v Texture ()
AEEEEEEE EEEE
| |

MakePolygon ()
p:Point 0
first true
v p

first'
if ~first
> (p, P~P,P")

: Point >> Bezier

false

RoundPolygon ()
¥ (A, B, C)
n=(A1C)/ 4

>> (A, B+ 1, C)

: Bezier >> Bezier

TransformBeziers (M:Matrix)
v (a, B, C)
>> (MA, MB, MC)

: Bezier >> Bezier

initial input -
oA
[2o %LB
59 3 5.7.01 0.1, 0.1

An interactive visualization of the Gezira/

Nile software by Dan Amelang, a

graphics renderer (Gezira) written in a

domain specific language (Nile).

This project points to ways in which

software description, data, and behavior,
can be represented and made tangible as

deeply and vivaciously interlinked

representations.

ExpandSpans ()

ProjectLinearGradient ()
==II AEEEE EEER

PadGradient ()
==Il EEEEE EEER

GradientSpan ()

F] Rea
ANEEE EEN M|““
output 34 Reals | ||

ExpandSpans ()
¥ (x, ¥, C,

if ¢ >

>>

<<

ProjectLinearGr,

PadGradient ()
Vs
> 0 D

GradientSpan (A
Vs
>> sA +

Hack 'n’ Slash

Hack 'n’ Slash is a traditional Zelda-like adventure game—an adventure game structure that
requires puzzle solving as well as action gameplay to progress—with a twist: instead of a sword,
you have a USB stick that can be used to inspect and modify (hack) everything in the world.

' SpikeyTurtle 1 -

CHARGE_DISTANCE sea
CHARGE_SPEED 380
DAMAGE 1
EXPLODE_ON_CHARGE_HIT false
FACTION BAD

ATTACK true

ATTACK_SPEED 308

DAMAGE_PER_HIT |
PFLY_AWAY 4 false »

PERCEPTION_RADIUS 300

TAKEOFF_HEIGHT 100

TAKEOFF_SPEED 75

e [close]

-

The primary mode of interaction is viewing and editing the property sheet of objects.

FIELD_OF_VIEW_ANGLE 188
FLIPPED_OVER_SECONDS

HEALTH

HEARTS_TO_DROP

I1DLE_BEHAVIOR

MOVE_SPEED
PERCEPTION_DISTANCE

v

Below, the player has revealed a visualization of normally invisible spatial data structures:

The game works best when it provides an experience that flirts with the boundary between in-
game debugging tools that a developer might use, and the experience of a typical genre game.
When the game veers off into basic scripting the experience falls apart, as the tools aren’t very
good.

Shadershop

Toby Schachman (2014)

What if making shaders was more like using Photoshop than writing symbolic code? Shadershop
is a direct manipulation interface for constructing shaders out of primitive functions like lines and
sine waves, and binary operations like compose, add, and multiply.

Expand and collapse outline

H H Library yi 3
E'::;tf'::ci-i'obr:??’n St Functions Canvas Toggle Cartesian and == |compose | asa | murpy e———————Click to create composite

Drag to pan Color Map view f i
(Add : unction from selected
to the canvas / Line Scroll wheel to zoom W functions

Click a custom \/" sine

function to edit A s

Click to select function

it on the canvas 38 -Click to select - r & Toggle .V'SIbmty of
[; function
s Frac multiple functions
Outline

j‘f"f Floor

Click to select function

Drag control points
< > 38 -Click to select multiple

to transform

I selected function functions .
Drag to reorder functions
EEEHRIEEET //‘ 72\ ~\ Drag out to delete functions
Rename function —@—« \ / / \ /
/ X:
Create new function ——— \J / \ / ’
4 _ \

- Inspector Inspector
+ 0 Type in transformation
% o2 parameters—numbers

vl .
or math expressions

X+
°

0.69

Sine((x - 0.84) / 1.35) * 2.74 + 0.43 + Sine(x / 0.21) * 0.69

Shadershop always shows you the expressed you have created at the bottom, helping you to
think across multiple representations. It works in both 1d and 2d domains.

| wish the expression, function hierarchy, and inspector helped me patterns across them more.
Perhaps inspector coordinates could be shown in the function hierarchy, and color patterning and
pointer interaction could help connect the symbolic expression with the functions. Maybe there is
some way to spatially connect the function hierarchy with the expression hierarchy—that would
be great.

Also, it would be nice if somehow the center of action—the main rendered display—would also

function as the primary place where you manipulate all composed functions. Of course this is
probably not practical with the 2d view, but it might in 1d.

http://tobyschachman.com/Shadershop/

Earth: A Primer

Earth Primer is a science book illustrated with interactive toys.

Interior

3. Mantle

8. Hot Spot 6. Crust

Narrative structure borrows from

Rz

Convection Cells

The inner core’s heat drives currents
of magma in the Earth’s mantle.
These currents form convection cells,
whose flows are illustrated here with
white lines.

Cells share edges. One side, the hotter
one, goes up. The other goes down.

Geologists believe that it is the
circulation of these currents that
drives the motion of plates at the
carth's surface.

=

* Books: segmentation (chapters, pages), order, and formal genre expectations.
* Games: completing objectives unlocks pages and tools.
Concepts are gradually introduced, creating a fluency gradient in both using the

program and geology.

< surface

. o
< Iz
N

» 2O-

i

»H oo
“B O~
“PKB

»

Normal Raise Bedrock

Every aspect of the design is designed to foster
delight and wonder: simulation and tool
dynamics, interaction design, music, sound,
visuals, and animation.

Sandbox

‘Welcome to the sandbox! Here you can run wild and shape landscapes with all the tools
you've-unlocked while progressing through the primer.
. .

5 u |
. .

Library

Open-ended simulation play is encouraged
in the sandbox mode, and by allowing the
narrative intent of most pages to be
subverted by open-ended play.

Human Resource Machine

Tomorrow Corporation (2015) Sabbatical Boah

Exclusive Lounge . (L) Abso

A game about programming. Each stage asks you to write @ trvioyee
an assembly language program that directs an office worker

(you) to manipulate blocks of data. D voxinizaton tec

For each thing in the INBOX,
multiply it by 8, and put the
result in the OUTBOX.

Using a bunch of ADD
commands is easy, but
WASTEFUL! Can you do it using
only 3 ADD commands?
Management is waiching.

What works: | wish:

* Gentle progression. * Output was meaningful information, not random
* Each level is a simple programming challenge. data.

* Drag and drop code editor. * Output could be personally meaningful.

* Adjusting playback speed. * | could puppet the worker directly to specify
* Concreteness: data, program, character taking action—we could close to this when indicating
action, animation. registers, as we point to the world.

* Player represented as a character in the * | could drag program counter.

program, world, and story. * More robust time travel debugging. You can
* Immersive world, story, characters, and music. only rewind after the program fails. Pause

e Dialog. needed.

* Optional optimization challenges (# instructions, ® World reacts, previews with data and activity,
steps) program as | build it.

* Assembly is a liability and an asset.

Apparatus

Toby Schachman (2015), and Joshua Horowitz

"Apparatus is a hybrid graphics editor and programming environment for creating interactive
diagrams” (http://aprt.us). It's central fantastic trick is that the diagram elements can be directly
manipulated, allowing the diagram and code to be played backwards and forwards. A
numerical solver is used to make the magic happen.

Symbols New Load Save Undo Redo Delete Group Create Symbol Outline
] Group——Rename element.
Create new variable. +
' EACERO Drag to reorder
Drag in tto the N There will be a circle next to O 1 1.86 outli%e
canvas to ?;ﬁa e every attribute which O wx -1.56 '
a vatr]laln ojine influences the geometry of c""; N—
Rectangle Symbol. the selected element.
Toggle to make the selected Y, 1.00
element control this attribute.
e N Drag to reference this
/ N\ attribute in an
‘ \ expression or click it
Circle . / \ i i i
Click to select. [\ while typing to insert a
Double click to select ——— | reference.
into” a group. ‘ Rename attribute.
Text) /
\ /
A P
— Rectangle
Text Variables)
+ Create new variable.
Drag to adjust scale of
Transform
- selected element. O 1.86 Drag to scrub.
Ow -1.56 Type javascript.
o Scale X 1.00 yp J p
. 1. Scale Y 1.00
Drag to adjust position of —4 Rotate 0.00
Group /s selected element.
Path
Close Path true
#—— Remove symbol. e -
[Fill
Fill Color rgba(0.93, 0.93, 0.93, 1.00)
- . Stroke
Group 4—— Edit symbol. Drag to pan the canvas Stroke Color rgba(0.6@, 0.60, .60, 1.00)
Rename symbol. glop) .
;t"' Scroll to zoom. Line Width
Create new symbol.
What works: | wish:

e Powerful causal linkages between visual and
parametric elements.

e Solver magically brings these bidirectional
linkages to life.

e System has a lot of expressive power.

¢ Clear linkage between visual and inspector
relationships.

* Combination of direct manipulation and coding.

* Multiple representations—outline, inspector
view, constraints—were more consolidated,
ideally as manipulables in the main canvas.
* More responsive performance.
® An ecology of reading and writing:

e Easy to embed diagrams and make
content for them to live in.

* Easy to share components.
* Complex network of causal and hierarchical
relationships was somehow less dizzying.
* Improved graphics tools, e.g. color picker.
e Simulations: feedback loops and time.

g%.Js

Guillermo Wehster (2016)

g9 is a Javascript library for making interactive figures. It works like a stripped down version of
Apparatus. Figures are described as code, with the variables that move freely with user
interaction specifically called out. A numeric solver is used to find new values for these variables
in response to dragging of the generated svg graphic.

> Run (Cmd-Enter)

var initialData = {
x: 10,
y: 0

}

var render = function(data, ctx){
ctx.point(data.x, data.y) L4
ctx.point(data.y, data.x)

}

g9(initialData, render)
.align('center', 'center')
.insertInto('#demo-basic')

> Run (Cmd-Enter)

var initial = {
"time™: 72

}

function render(data, ctx){
var crank = 4@
var shaft = 120

// housing

var fill = 'hsl('+ (Math.cos(data.time) * 60 + 308) +', 100%, 90%)"
ctx.rect(-4@, @, 80, -235, { fill: fill, stroke: 'black' })
ctx.circle(e, @, { r: 70, fill: 'white', stroke: 'black' })

var CrankAngle = Math.asin(crank * Math.cos(data.time) / shaft)
var OppositeAngle = Math.PI - (CrankAngle + data.time);
var Y = shaft * Math.cos(OppositeAngle) / Math.cos(data. time)

// shaft

ctx.line(Math.cos(data. time) * crank, Math.sin(data.time) * crank, @, Y, {
*stroke-width': 10,
*stroke': 'gray',
*stroke-linecap’: 'round’

b

/7 crank

ctx.line(®, @, Math.cos(data.time) * crank, Math.sin(data.time) * crank, {
"stroke-width': 40,
'stroke': 'black’,
"stroke-linecop': 'round’

b

// piston
ctx.line(@, Y, @, Y - 70, {
"stroke-width': 70,
'stroke': 'gray’,
B
}

var graphics = gd(initial, render)
.insertInto('#demo-crank')

/*setInterval (function({
if(!graphics. isManipulating){
var data = graphics.getData()
data. time += 0.05
graphics. setData(data)

iy
3 10)%/

SimCity reverse diagrams
Chaim Gingold (2016)

Reverse diagrams (Gingold 2016) map and translate the rules of a complex simulation program into
a form that is more easily digested, embedded, disseminated, and and discussed (Latour 1986).

Simulate() Map Data Flow

‘}5 Population Density
FopDensn)

Police
LECITE

0) Police Coverage
® - ® e
§ Comescn)

uuuuuuuuuu

Fire
® coverage

Police Coverage & Crime ‘E
R (el A S S tvive o

@ Crmesaan

nnnnn

ppppp

Power Scan l,
& Dobowin o

nnnnnnnn

[m
(I
(Im
[
(I
(I
(I
(m

Decay Traffic
& Rate of Growth .
Maps Taxes Pollution

L] 0o

2

(E, Pollution &
Land Value
Pisan

18
Rate of
Growth

RateOGHerl] ©

Decay Traffic ,
& Rate of Growth

Maps

DectOGHen()

fscruty

® visto o player

(Smoom3) o
18 18 12 12 18
. I Pop. Com.
Density Rate
porcerprec © [N oicerso Crimettent l ol conven

Pollution and
Land Value

Power

Crime and Police

Fire Coverage

Traffic and
Population Density

Rate of Growth and s
ial Rate

Temporary Maps 12/
" ry b

The technique is inspired by the game designer Stone Librande’s one page game design documents

(Librande 2010).

Map Scan Setvaves) e "

RCI Zones

inths
Resx 02
0 o 2
o
i iR
E : Power Conduit LTt ComPop. IndPop.

vvvvvv

Seaport

Airport

Animation Characters 827-851

Power Outage

Draw Bridge—Horizontal WeROGI HeRoG

Airport Radar

A

Park Fountain

ssssssssssssssssssssss

If we merge the reverse diagram with an interactive approach—e.g. Bret Victor's Nile Visualization
(Victor 2013), such diagrams could be used generatively, to describe programs, and interactively,

to allow rich introspection and manipulation of software.

Latour, Bruno (1986). “Visualization and cognition”. In: Knowledge and Society 6 (1986), pp. 1- 40.

Librande, Stone (2010). “One-Page Designs”. Game Developers Conference. 2010.

Victor, Bret (2013). “Media for Thinking the Unthinkable”. MIT Media Lab, Apr. 4, 2013.

Gingold, Chaim (2016). Play Design. Ph.D. dissertation.

Sketch-n-sketch

Chugh et al. (2016)

Sketch-n-sketch is an editor for live-linked code and graphics. Edit the code and the diagram
changes; edit the diagram and the code responds. It is inspired, in part, by Bret Victor's Drawing
Dynamic Visualizations and Toby Schachman’s Apparatus. The point of departure is making a fully
featured programming language a top level goal.

’ sketch-n-sketch v0.5 [Heuristics] Fair [Orientation] Vertical

f op] [29 215 « Code Canvas
((+ (+ (70,51 (o (o (- polygons_cop .
+ (- polygonS_top (+ helper_r helper_r))
(- (* 0.5! (+ (- (- C+ polygon6_bot help: "

¢+ 0.5! (+ (+ (+ (- polygonS_left he e
+ polygonS_right helper_r) (+ C+ (- polyd R
(- (+ polygon6_bot helper_r) (+ (- O! he
- (+ polygon6_bot helper_r) polygon7_top) (Revert

k30461 [(+ k3034 helper_r) (- (+ (-

3034 helper.r) (+ (+ k3046 helper r) || (RGN
bot] [(- polygon7_top (+ helper_r hel; Clean Up
- (+ k3041 helper_r) polygon5_top) (- polygc
- (+ k3046 helper_r) polygons_left) (- polyc

Cursor Draw

[pnlygons 1eft polygonS top polygonS_right pc Zones +
18 (le strokeColor strokeWidth] [32 'black' 2] -
18 Clet pecs [f0 1] [G136 0] [1 k31341] - Widgets +
20 [(stretchyPolygon bounds color strokeColor strokeWidtl - Ghosts

[C+ (+ k3046 helper_r) helper_r) (+ (- pc [

t top polygonG rlght polygon6_bot] Click and Drag N
okeColor st 1] [371 'black' 2] S

Clet peis [T0 0] L1 k3126] [k3098 171 Solect Getiie

27 T (stretchyPolygon bounds color strokeColor strokeWidt! [T lo]

(+ (+ (- polygonS_left helper_r) (* 0.5! (+ (+
[1eft pulygon? top k3034 polygon7_bot]

re th] [177 'black' 2]
[[e 1] [1 k3063] [k3061 011
34 C (str'etchyPolygon bounds color strokeColor strokeWidtl

36 (blobs [

37 polygons
38 polygon6
39 lyml ygon7

Pl o) 0:02/452

| find this to be a very cool idea with some nice flourishes—and I'm sure there is much more to
admire. In practice | find it to be quite cumbersome. You have to manually push a “Run” button to
get the diagram to respond to code changes, which often leads to syntax errors blowing up the
diagram—making the code feel fragile and not incrementally tweak-able, which is a basic asset of
direct manipulation. The graphics editor is clunky, and lacks rudimentary user interface niceties. (e.g.
| couldn’t push delete to remove a selected object.)

One of my favorite touches is that rolling over graphics elements highlights corresponding elements
in code.

8 (def

9 (let [] [73 228 167 153] Cursor

10 (let [1 [71 239 EET g

11 (let o Rect

12 [(rawRect fill stroke strokeWidth x

13 I /
14 (def Polygon

15 (et [7 [88 248 224 365] Path

Chugh, Ravi. “Prodirect Manipulation: Bidirectional Programming for the Masses.” In Proceedings of the 38th
International Conference on Software Engineering Companion, 781-784. ACM, 2016.

Chugh, Ravi, Brian Hempel, Mitchell Spradlin, and Jacob Albers. “Programmatic and Direct Manipulation, Together at
Last.” In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 341-354. ACM, 2016.

Buhble Sort

Glen Chiacchieri (2016)

n n

An explanation of bubble sort that uses “showing and doing”, “play”, and “exploration.”
While Glen’s piece is a work in progress of a much longer explanatory essay, | want to call
attention here to a key interactive:

A line of characters represents an array of data to be
sorted. If you touch a character, it jumps—and will
jump over its neighbor if they are in the wrong order.

Admirable qualities to note:

* Player puppet the algorithm, from the algorithm’s
points of view—where it is iterating from.

* Data is concrete.

* Representation is appealing: characters, colors,
sound, animation.

What | would push further on:
* Make data more tangible: allow me to reorder and
< m ‘N stretch the characters.
® Make more of the algorithm tangible. e.g. A
butterfly flying overhead that can also be moved; A
comparator function that is somehow tangible.
e Start and build up from simplest thing: two
o o e characters to play with.
* Even simpler: play starts by manually sorting two
elements themselves (no comparator and auto-jump;
just click to jump and swap.)

(=
«
=

Glen’s project is unpublished. Contact him and he might send you a link.

Carbide

Guillermo Webster and Kevin Kwok (2016)

Experimental programming environment with a variety of intriguing features. (I can't get the
environment to load, and the site CSS is periodically failing for me).

c antlmatter15 FI"aCtal Tree saved a few seconds ago antimatter15 '
Element
Visualize any DOM element var canvas = document.createElement('canvas') ¢~
. <canvas/> »
with the "HTML Element" canvas.width = 700
. 700
Widget canvas.height = 400

canvas.style.widﬁcoﬁ = "":’L‘OO%'
var ctx = canvas.getConext('Zd');

This is the recursive definition function drawTree(x1, y1, length, angle, n){
of the drawTree function. It var x2 = x1 + length * Math.cos(anglexMath.PI/180);
takes four arguments: var y2 = y1 - length * Math.sin(angle+Math.PI/180);

e x1: The starting X coordinate

e y1:Thestarting Y coordinate ctx.beginPath();

o length: the length of the line ctx.moveTo(x1, y1);

segment to draw ctx. lineTo(x2, y2);
e angle: The cumulative angle of

the line segment ctx.strokeStyle = n < 2 ? "green" : "brown";
e n: The number of levels left to ctx.lineWidth = n - 1;

draw

ctx.stroke();

Stop drawing the tree if(n == @) return;
whenever there are no more
branches left to draw drawTree(x2, y2, length0.75, angle+27, n-1);) 0
o value = 27

Manipulate anything by drawTree(x2, y2, length0.75, angle-57, n-1); 0 00
dragging nice friendly sliders } v value = 57
around

drawTree(350.5, 367, 100, 90, 11)

Undefined 367
517.50ms treejs P 38-Enter

* Back propagation (edit program output and input changes)

* Add probes to the variables, expressions, or subexpressions of running programs.

¢ Extensible widgets for a variety of data types that visualize and edit these values, e.g.
numbers, sliders, HTML, map data, colors, graphics, strings, matrices, JavaScript object, JSON,
binary data, etc...

* Supports (in theory) any language, although JavaScript is most supported right now.

* Programming notebook style cells (can't find a visual of this though). They point out you need
fewer cells that other environments since so much visualization is handled for you.

® Rich text comments. (Pictures would be even better).

e Polished visuals and interaction design.

http://alpha.trycarbide.com

Eve

Kodowa (2015)

Hyper-literate programming environment with a unique database/causality model. Descends
from the Light Table (2012) project.

c »
Flappy Eve Flappy Eve
Setup
Draw the game world! When a player starts the game, we commit a #world, a #player, and some #obstacles.

These will keep all of the essential state of the game. All of this information could have

Game menus

been stored on the world, but for clarity we break the important bits of state into objects
culation that they effect.

- The #world tracks the distance the player has travelled, the current game screen, and
the high score.

- The #player stores his current y position and (vertical) velocity.

- The obstacles have their (horizontal) offset and gap widths. We put distance on the
world and only keep two obstacles; rather than moving the player through the world, we
keep the player stationary and move the world past the player. When an obstacle goes off
screen, we will wrap it around, update the placement of its gap, and continue on.

Setup

Add a flappy eve and a world for it to flap in:

commit
[#player #self name: "eve" x: 25 y: 50 velocity: 01
[#world screen: "menu” frame: @ distance: best: 0 gravity: -0.061]
[#obstacle gap: 35 offset: @]
[#obstacle gap: 35 offset: -1]

Next we draw the backdrop of the world. The player and obstacle will be drawn later
based on their current state. Throughout the app we use resources from @bhauman's
flappy bird demo in clojure. Since none of these things change over time, we commit
them once when the player starts the game.

Draw the game world!

search
world = [#world]

commit @browser
world <- [#div style: [user-select: "none” -webkit-user-select: "none” -
moz-user-select: "none”] children:
[#svg #game-window viewBox: "10 @ 80 100", width: 480 children:
[#rect x: 0 y: @ width: 100 height: 53 fill: "rgb(112, 197, 206)" sort:

e State database. All state is in a database of records. Program fragments read and write to this
database, which also encapsulates errors. In this fashion, complex programs are build by
composing simple processes that read/write to the database. (Analogous, in some ways, to a
spreadsheet.)

e Causality tracking. Database enables system to track causality—what led to what. (This design
brings Realtalk to mind.)

¢ Inspect output (e.g. HTML) to see what might have created it.

* Hyperliterate programming. Code is not just embedded in prose, but a complex program
takes the form of navigable hierarchical prose (i.e. a book). Code view is dynamic: select which
parts of the program you want to see.

® Inline errors

¢ Inline data. Easy inline data visualization (notebook style), with some simple widgets, like bar
graphs.

http://witheve.com

Simulating the World (in Emoji)

An authoring tool for cellular automata style simulations.

Leverages appeal, art, and abstraction of emaji.

SIMULATING

THE WORLD (IN EMOJI@)

nicky case, jan 2016

click me

4 2§t4 RO ST P¢ Taee T YOV

4 4 4
4, 3 *a : A :: 2“2 ===== EXPERIMENT ==
4 " The tree growth rate starts at
:“44 A : % %%:‘4% . 0.3%. What happens when you
: : i‘ : 4 increase it to 1%? 2%? 5%?
putite 1 |
(P.S: you can now pause the sim,
§§ : 4 “:i‘ “2 ‘% 7y and choose what you want to
tt‘ ‘ ‘: " 4 ‘draw" on the grid)
A AA
n 4 % iﬁ;
444
t 4 : ““A 4 ‘i:‘
4 A:A 44§ :
N ‘i‘ﬁ A “ : ;:3 " ‘iﬁ “ THINGS WITH RULES
Ftdt Ml
‘i : A§: A A‘ ‘t ; empty spot
reset pause draw | A Grows trees. (Adjust the growth rate!)

Click grid to start an epidemic.

<> susceptibles can get infected
¥ immunized peeps are one-
tenth as likely to get infected

3 sick peeps can recover or die
&3 dead

“-recovered, can't get sick again

Public health officials already use
sims to fight epidemics, which
means... = SIMS SAVE LIVES.

This simulation explains:

* herd immunity

* herd immunity's tipping point

* why a virus that's *too* deadly,
paradoxically, kills fewer people.

reset pause ; step draw |§=)

THINGS WITH RULES

The world state and simulation rules
can be edited live.

THINGS WITH RULES

empty spot

Below are the rules for Empty Spots. You can freely change rules,
even add new rules, and they'll take effect immediately! Try it out:

Witha 0.1 % chance,
o Tuninto | A:tree [

& tree

You can also change the art! Just click the icon & paste in a new
emon Here's a few you can copy-paste in:

®a 47T

Other ways to get emoji:
Mac: press control+command+space
Other: copy from Emojipedia.org

If [atieast(=) [1 neighbors are | *: fire B
Turninto | - fire B

fire

Finally, you can even create new things with rules! The only limit is
your
IMAGINATION

9 Turn into | : empty spot |}

THE WORLD

Thisworldisa 12 by 11 grid.

We start with this ratio of things:

=

And each thing considers ' the 8 spots to its sides & corners g to be its
neighboring spots.

A GUI editor scaffolds creation of
valid rules.

La Tabla

La Tabla is an experiment in making a computerized plaything that is radically embodied and open
ended. It is a magical table—put things on it and they come to life. Make music, play pong, design
and play your own pinball tables, and create animations with your body, your friends, paper,
drawings, game pieces—whatever strikes your fancy. La Tabla achieves this by combining computer
vision, projection mapping, and design principles that anticipate and encourage open ended play

and appropriation.

Bouncing balls. Cel animation.

Music scoring.

Pinball construction and play.

Billiard-ball model of AND gate 1.jp Many of Tabla’s activities can be seen as a kind
of programming. For example, Fredkin and
5\:| oot Toffoli’s billiard ball AND gate shows how

Lo computer logic can arise from from billiard ball
. physics (image from Wikipedia).

AND-output

1-out

Loopy

Nicky Case (2017)

Draw circles, lines, and type to create simple system dynamic style feedback loops. In this effort,
there are echoes of Richmond’s Stella authoring tool (1985) and Forrester’s visual system
dynamics notation.

° -

@
i

State Machine

Terry Cavanagh and Ruari 0'Sullivan (2017, unreleased)

The developers of this title are experienced independent game developers. Although they've
published very little about this title, it looks promising.

Tab: ltems

Ftlas

| gather [al]

m_» mov ey
EDIT ROH Result: true

W exit dot matrix

trasy [

An electrical system with visually apparent state (wires on/off)
helps to integrate various game systems.

http://statemachinegame.com/blog/

Flow Sheets

The idea behind Flow Sheets is to make visible all of the data that courses through a program,
and to afford a style of programming in which data is always visible. The resemblance to
spreadsheets is more than visual: programming is never divorced from data, even while it is

being authored.

import requests from pyquery import Pyt _new import

'publisher(s)"'.lower()

'Zaxxon'

Zaxxon publisher(s)

'https://en.wikipedia.org/wiki/{}"'.format(
https://en.wikipedia.org/viki/Zaxxon

.title().replace(’ ','_

requests.get ([]). text
<IDOCTYPE htmi><html class="client-nojs" lang="en" gir="ltr"><h

[object Object]
[object Object]
[object Object]

o
virtual
Console
December 15,
20091221
Genre(s Isometric shooter
ode (s} Up to 2 players,
alternating turns
: upright and
Cabinet cocktail
Sega zaxxon
Arcade system S
hardware
cpy 280 (@ 3.04125 MHz)
Sound Samples
Raster, 224 X 256
1 pixels (Vertical),
Displ.
I 256 out of 512
colors
o2

[object Object]
[object Object]
[object Object]
[object Object]
[object Object]
[object Object]

pa(M) . find(. infobox tr')

Length: 28

X4 rows_ DM htmi (0]

<th colspan="2" class="fn" style="text-align:center;font-size:125%
<td colspan="2"

<th scope="row" style="white-space:nowrap;padding-right:0.65em;"

<th scope="row" style="white-space:nowrap;padding-right:0.65em;"
<th scope="row" style="white-space:nowrap;padding-right:0.65em;"
<th scope="row" style="white-space:nowrap;padding-right:0.65em;"
<th scope="row" style="white-space:nowrap;padding-right:0.65em;"

<th scope="row" style="white-space:nowrap;padding-right:0.65em;"

ze:110%;f e:italic;”

style="text-align:center"><img alt="Zaxxon fiye

><a href="fwiki/Video_game_developer" title="v
><a href="fviki/Video_game_publisher

><a hret="jwikijVideo_game_music" tit
><a href="fwiki/Computing_platform" titie="Con
>Release date(s)</th><td style="line-height:1.3
><a href="fwikijVideo_game_genre" title="Videc

style=" ght:0.65em;"
style="white-space:nowrap;padding-right:0.65em;"

<th scope="row"
<th scope="row"
<th scope="row" style="white-space:nowrap;padding-right:0.65em;"

<th scope="row" style="white-space:nowrap;padding-right:0.65em;"

:1.3em;">U
><a href="fwikijVideo_game_arcade_cabinet" tit
="Ar

Jth><td style="line-heig

><a hret="fwikiArcade_system_board" ti
><a href="fwiki/Central_processing_unit" tit

<th scope="row"

style=" ght:0.65em;"

line-height:1.3em;">Sar

<th scope="row"

style=" ight:0.65em;"

ight:1.3em;"><a

:120%">Review h

ign:center;vertical-ali

vertical-align:midae

h style=

ext-align:center;vertical-align:midale">AllGame</td><td st
ext-align:center;vertical-align:middle"><a href="jwiki/Computer_and_Video_Games" title="Computer and
de Express</i></td><td style="text-align:center; Length: 28

values

.getcl

pa(FM(0]). text(). lower()

pa(FM 1)) .text() if len(FM) > 1 else None

[object Object]

[object Object]

[object Object],l
[object Object],[
[object Object],l
[object Object],l
[object Object],l
[object Object],[
[object Object],l
[object Object],[
[object Object],l
[object Object],[
[object Object],l
[object Object],l
[object Object]

[object Object],l
[object Object],l
[object Object],l
[object Object],l
[object Object],l
[object Object],l
[object Object],l
[object Object]

[object Object],[
[object Object],l
[object Object],[
[object Object],l
[object Length: 28

zaxxon

north american arcade flyer
developer(s)
publisher(s)
composer(s)
platform(s)

release date(s)
genre(s)

mode(s)

cabinet

arcade system

cpu

sound

display

review scores
publication

aligame

cvg

arcade express

home computing weekly
k-power

tilt

awards

publication

arcade awards (1982)
arcade awards (1983)
arkie awards (1984)

electronic games

Length: 28

Sega

Sega

$G-1000 Katsuhiro Hayashi

Arcade , various

January 1, 1982 Arcade January 1, 1982 [1] ColecoVision Novembe:
Isometric shooter

Up to 2 players, alternating turns

Upright and cocktail

Sega Zaxxon hardwiare

Z80 (@ 3.04125 MHz)

Samples

Raster , 224 x 256 pixels (Vertical), 256 out of 512 colors

Score

(Arcade) [26] (Coleco) [2] (5200) [3] (INTV) [4] (2600) [5] (Apple)
39 /40 (MSX) [27]

9/10 (ColecoVision) [28]

(Spectrum) [29]

8 /10 (TRS-80) [30]

(ColecoVision) [31]

Award

Best Science Fiction/Fantasy Coin-Op Game (Certificate of Merit)
Videogame of the Year (Certificate of Merit) [33]

Stand-Alone Game of the Year , Computer Game of the Year (Cert
Hall of Fame [35) Length: 28

Sega

oo if LOTM == [T else None

Length: 28

Each table has a name, can be independently moved around the grid, and reference one
another’s data. The presentation style of tables can be changed, for example allowing html to be
shown as code or a rendered page layout. When values are modified downstream data changes
are called out via a simple highlighting animation.

Work in progress. This is the second major iteration of Flow Sheets. Glen created the first one in 2016.

for val in]:
if val: return val

Sega

References

Agalianos, Angelos, Geoff Whitty, and Richard Noss. “The Social Shaping of Logo.” Social Studies of Science 36, no. 2
(2006): 241-267.

Auerbach, David. “The Hardest Computer Game of All Time.” Slate, January 24, 2014. http://www.slate.com/articles/
technology/bitwise/2014/01/robot_odyssey_the_hardest_computer_game_of_all_time.html.

Begel, Andrew. “LogoBlocks: A Graphical Programming Language for Interacting with the World.” Electrical
Engineering and Computer Science Department, MIT, Boston, MA, 1996.

Ben-Ari, Mordechai, Roman Bednarik, Ronit Ben-Bassat Levy, Gil Ebel, Andrés Moreno, Niko Myller, and Erkki Sutinen.
“A Decade of Research and Development on Program Animation: The Jeliot Experience.” Journal of Visual
Languages & Computing 22, no. 5 (2011): 375-384.

Borning, Alan. “Graphically Defining New Building Blocks in ThingLab.” Human-Computer Interaction 2, no. 4 (1986):

269-295.

. "The Programming Language Aspects of ThinglLab, a Constraint-Oriented Simulation Laboratory.” ACM

Transactions on Programming Languages and Systems (TOPLAS) 3, no. 4 (1981): 353-387.

. “ThingLab: A Constraint-Oriented Simulation Laboratory.” XEROX: Palo Alto Research Center, 1979.

. “ThingLab: An Object-Oriented System for Building Simulations Using Constraints.” In Proceedings of the 5th

International Joint Conference on Artificial Intelligence-Volume 1, 497-498. Morgan Kaufmann Publishers Inc.,

1977. http://dl.acm.org/citation.cfm?id=1624545.

Brennan, Karen, and Mitchel Resnick. “New Frameworks for Studying and Assessing the Development of
Computational Thinking.” In Proceedings of the 2012 Annual Meeting of the American Educational Research
Association, Vancouver, Canada, 1-25, 2012. http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf.

Brusilovsky, Peter, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko, and Philip Miller. “Mini-Languages: A
Way to Learn Programming Principles.” Education and Information Technologies 2, no. 1 (1997): 65-83.

Chalcraft, Adam, and Michael Greene. “Train Sets.” Eureka 53 (1994): 5-12.

Chambers, Craig, and David Ungar. “Customization: Optimizing Compiler Technology for SELF, a Dynamically-Typed
Object-Oriented Programming Language.” In ACM SIGPLAN Notices, 24:146-160. ACM, 1989. http://
dl.acm.org/citation.cfm?id=74831.

Chugh, Ravi. “Prodirect Manipulation: Bidirectional Programming for the Masses.” In Proceedings of the 38th
International Conference on Software Engineering Companion, 781-784. ACM, 2016. http://dl.acm.org/
citation.cfm?id=2889210.

Chugh, Ravi, Brian Hempel, Mitchell Spradlin, and Jacob Albers. “Programmatic and Direct Manipulation, Together at
Last.” In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 341-354. ACM, 2016. http://dl.acm.org/citation.cfm?id=2908103.

Cooper, Stephen, Wanda Dann, and Randy Pausch. “Alice: A 3-D Tool for Introductory Programming Concepts.” In
Journal of Computing Sciences in Colleges, 15:107-116. Consortium for Computing Sciences in Colleges,
2000. http://dl.acm.org/citation.cfm?id=364161.

Cypher, Allen, and David Canfield Smith. “KidSim: End User Programming of Simulations.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 27-34. ACM Press/Addison-Wesley Publishing
Co., 1995. http://dl.acm.org/citation.cfm?id=223908.

Drummond, Brian, and Marilyn Stelzner. “SimKit: A Model-Building Simulation Toolkit.” In Al Tools and Techniques,
edited by Mark H. Richer, 241, 1989. https://books.google.com/books?
hl=en&lr=&id=iMUfTzVuasUC&oi=fnd&pg=PA2418&dqg=simkit+a+model+building+simulation+toolkit
+drummond&ots=hKigENJHUh&sig=McoA2WtoTj1HJewlWgDeRuisU1c.

Du Boulay, Benedict. “Some Difficulties of Learning to Program.” Journal of Educational Computing Research 2, no. 1
(1986): 57-73.

Gilmore, David J., Karen Pheasey, Jean Underwood, and Geoffrey Underwood. “Learning Graphical Programming: An
Evaluation of KidSim™.” In Human—Computer Interaction, 145-150. Springer, 1995. http://link.springer.com/
chapter/10.1007/978-1-5041-2896-4_24.

Green, Thomas R. G., and Marian Petre. “Usability Analysis of Visual Programming Environments: A ‘cognitive
Dimensions’ Framework.” Journal of Visual Languages & Computing 7, no. 2 (1996): 131-174.

Guo, Philip J. “Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.” In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education, 579-584. ACM, 2013. http://
dl.acm.org/citation.cfm?id=2445368.

Guzdial, Mark. “Programming Environments for Novices.” Computer Science Education Research 2004 (2004): 127-
154.

Guzdial, Mark, and Elliot Soloway. “Teaching the Nintendo Generation to Program.” Communications of the ACM 45,
no. 4 (2002): 17-21.

Hoc, J.-M. Psychology of Programming. Academic Press, 2014. https://books.google.com/books?
hl=en&lr=&id=NkOjBQAAQBAJ&oi=fnd&pg=PP1&dg=Lowering+the+Barriers+to
+Programming&ots=zT0A2L4u12&sig=mz5NVhAEiyaC_rhqT2cuU179p4k.

Hollan, James D., Edwin L. Hutchins, and Louis Weitzman. “STEAMER: An Interactive Inspectable Simulation-Based
Training System.” Al Magazine 5, no. 2 (1984): 15.

Horn, Michael S., and Robert JK Jacob. “Tangible Programming in the Classroom with Tern.” In CHI'07 Extended
Abstracts on Human Factors in Computing Systems, 1965-1970. ACM, 2007. http://dl.acm.org/citation.cfm?
id=1240933.

Hutchins, Edwin, J. D. Hollan, and D. A. Norman. “Direct Manipulation Interfaces.” Human-Computer Interaction 1,
no. 4 (1985): 311-338.

Ingalls, Dan, Bert Freudenberg, Ted Kaehler Yoshiki Ohshima, and Alan Kay. “Reviving Smalltalk-78.” Accessed
January 17, 2017. http://esug.org/data/ESUG2014/IWST/Papers/iwst2014_Reviving%20Smalltalk-78.pdf.

Ingalls, Dan, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. “Back to the Future: The Story of Squeak, a
Practical Smalltalk Written in Itself.” In ACM SIGPLAN Notices, 32:318-326. ACM, 1997. http://dl.acm.org/
citation.cfm?id=263754.

Ingalls, Dan, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken Doyle. “Fabrik: A Visual Programming
Environment.” In ACM SIGPLAN Notices, 23:176-190. ACM, 1988. http://dl.acm.org/citation.cfm?id=62100.

Ingalls, Daniel HH. “Design Principles behind Smalltalk.” BYTE Magazine 6, no. 8 (1981): 286-298.

———. "The Smalltalk-76 Programming System Design and Implementation.” In Proceedings of the 5th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, 9-16. ACM, 1978. http://dl.acm.org/
citation.cfm?id=512762.

Ingalls, Daniel, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi Mikkonen. “The Lively Kernel a Self-
Supporting System on a Web Page.” In Self-Sustaining Systems, 31-50. Springer, 2008. http://
link.springer.com/chapter/10.1007/978-3-540-89275-5_2.

Jenkins, Tony. “On the Difficulty of Learning to Program.” In Proceedings of the 3rd Annual Conference of the LTSN
Centre for Information and Computer Sciences, 4:53-58. Citeseer, 2002. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.596.9994&rep=rep1&type=pdf.

Jernigan, Will, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters, Irwin Kwan,
Faezeh Bahmani, and Andrew Ko. “A Principled Evaluation for a Principled Idea Garden.” In Visual Languages
and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on, 235-243. |IEEE, 2015. http://
ieeexplore.ieee.org/abstract/document/7357222/.

Kafai, Yasmin B., and Yasmin Bettina Kafai. Minds in Play: Computer Game Design as a Context for Children’s Learning.
Routledge, 1995. https://books.google.com/books?
hl=en&lr=&id=0cylIxa8ZjkC&oi=fnd&pg=PR2&dg=related:YCK2JCuULtAJ:scholar.google.com/

&ots=0xFijwNEXm7&sig=1-T48emVebB33aQv7EHCxtX3cbA.

Kahn, Ken. “Toontalk TM—an Animated Programming Environment for Children.” Journal of Visual Languages &
Computing 7, no. 2 (1996): 197-217.

Kay, Alan. “The Early History of Smalltalk.” SIGPLAN Not. 28, no. 3 (March 1993): 69-95. doi:10.1145/155360.155364.

Kelleher, Caitlin. “Motivating Programming: Using Storytelling to Make Computer Programming Attractive to Middle
School Girls.” DTIC Document, 2006. http://oai.dtic.mil/oai/oai?
verb=getRecord&metadataPrefix=htm|&identifier=ADA492489.

Kelleher, Caitlin, and Randy Pausch. “Lowering the Barriers to Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers.” ACM Computing Surveys (CSUR) 37, no. 2 (2005): 83—
137.

Kelleher, Caitlin, Randy Pausch, and Sara Kiesler. “Storytelling Alice Motivates Middle School Girls to Learn Computer
Programming.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1455—
1464. ACM, 2007. http://dl.acm.org/citation.cfm?id=1240844.

Ko, Andrew J., Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, et al.
“The State of the Art in End-User Software Engineering.” ACM Computing Surveys (CSUR) 43, no. 3 (2011): 21.

Ko, Andrew J., Brad A. Myers, and Htet Htet Aung. “Six Learning Barriers in End-User Programming Systems.” In
Visual Languages and Human Centric Computing, 2004 IEEE Symposium on, 199-206. IEEE, 2004. http://
ieeexplore.ieee.org/abstract/document/1372321/.

Krahn, Robert, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and Krzysztof Palacz. “Lively Wiki a Development
Environment for Creating and Sharing Active Web Content.” In Proceedings of the 5th International
Symposium on Wikis and Open Collaboration, 9. ACM, 2009. http://dl.acm.org/citation.cfm?id=1641324.

Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-Matti Jarvinen. “A Study of the Difficulties of Novice Programmers.” In
Acm Sigcse Bulletin, 37:14-18. ACM, 2005. http://dl.acm.org/citation.cfm?id=1067453.

Lincke, Jens, Robert Krahn, Dan Ingalls, and Robert Hirschfeld. “Lively Fabrik a Web-Based End-User Programming
Environment.” In 2009 Seventh International Conference on Creating, Connecting and Collaborating through
Computing, 11-19. IEEE, 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5350243.

———. "Lively Fabrik a Web-Based End-User Programming Environment.” In Creating, Connecting and Collaborating
through Computing, 2009. C5'09. Seventh International Conference on, 11-19. IEEE, 2009. http://
ieeexplore.ieee.org/abstract/document/5350243/.

Lincke, Jens, Robert Krahn, Dan Ingalls, Marko Roder, and Robert Hirschfeld. “The Lively PartsBin—A Cloud-Based
Repository for Collaborative Development of Active Web Content.” In System Science (HICSS), 2012 45th
Hawaii International Conference on, 693-701. IEEE, 2012. http://ieeexplore.ieee.org/abstract/document/
6148978/.

Ludolph, Frank, Y.-Y. Chow, Dan Ingalls, Scott Wallace, and Ken Doyle. “"The Fabrik Programming Environment.” In
Visual Languages, 1988., IEEE Workshop on, 222-230. IEEE, 1988. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=18032.

Malan, David J., and Henry H. Leitner. “Scratch for Budding Computer Scientists.” ACM SIGCSE Bulletin 39, no. 1
(2007): 223-227.

Maloney, John, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman, and Mitchel Resnick. “Scratch: A Sneak Preview
[Education].” In Creating, Connecting and Collaborating through Computing, 2004. Proceedings. Second
International Conference on, 104-109. IEEE, 2004. http://ieeexplore.ieee.org/abstract/document/1314376/.

Maloney, John H., Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk. Programming by Choice: Urban
Youth Learning Programming with Scratch. Vol. 40. 1. ACM, 2008. http://dl.acm.org/citation.cfm?id=1352260.

Maloney, John H., and Randall B. Smith. “Directness and Liveness in the Morphic User Interface Construction
Environment.” In Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology,
21-28. ACM, 1995. http://dl.acm.org/citation.cfm?id=215636.

Maloney, John, and Walt Disney Imagineering. “An Introduction to Morphic: The Squeak User Interface Framework.”
Squeak: OpenPersonal Computing and Multimedia, 2001. http://thelackthereof.org/docs/library/unsorted/
programming/morphic.final.pdf.

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. “The Scratch Programming
Language and Environment.” ACM Transactions on Computing Education (TOCE) 10, no. 4 (2010): 16.

Mann, Yotam, Jeff Lubow, and Adrian Freed. “The Tactus: A Tangible, Rhythmic Grid Interface Using Found-Objects.”
In NIIME RA_QQ 2NNQ httn-/Aananar aradamia adii/Aawnlaad/ARAR1492/nmNONNTR ~Af

NIV, UV U/ v, L VUV UV UCUMIC T UL S AU UV T TV U TOUY T 7 DI 7 U7 Ut

Martin, F G. L. Colobong, and M. Resnlck Tanglble Programmmg with Trains, 1999.

McNerney, Timothy S. “From Turtles to Tangible Programming Bricks: Explorations in Physical Language Design.”

Personal and Ubiquitous Computing 8, no. 5 (2004): 326-337.

. "Tangible Programming Bricks: An Approach to Making Programming Accessible to Everyone.” Thesis,

Massachusetts Institute of Technology, 2000. http://dspace.mit.edu/handle/1721.1/62094.

Meerbaum-Salant, Orni, Michal Armoni, and Mordechai Ben-Ari. “Learning Computer Science Concepts with Scratch.”
Computer Science Education 23, no. 3 (2013): 239-264.

Moloney, J., Alan Borning, and Bjorn Freeman-Benson. Constraint Technology for User-Interface Construction in
ThingLab II. Vol. 24. 10. ACM, 1989. http://dl.acm.org/citation.cfm?id=74917.

Morgado, Leonel, Maria Cruz, and Ken Kahn. “Radia Perlman—A Pioneer of Young Children Computer Programming.”
Current Developments in Technology-Assisted Education. Proceedings of M-ICTE, 2006, 1903-1908.

Moskal, Barbara, Deborah Lurie, and Stephen Cooper. “Evaluating the Effectiveness of a New Instructional Approach.”
ACM SIGCSE Bulletin 36, no. 1 (2004): 75-79.

Nardi, Bonnie A. A Small Matter of Programming: Perspectives on End User Computing. MIT press, 1993. https://
books.google.com/books?hl=en&lr=&id=0drDRT370eoC&oi=fnd&pg=PR11&dqg=nardi
+spreadsheet&ots=eFnU_hPwnu&sig=rdsz4|9pZT7CIYVcAM3mMJiY56g.

Nardi, Bonnie A., and James R. Miller. “An Ethnographic Study of Distributed Problem Solving in Spreadsheet

Development.” In Proceedings of the 1990 ACM Conference on Computer-Supported Cooperative Work, 197-

208. ACM, 1990. http://dl.acm.org/citation.cfim?id=99355.

. The Spreadsheet Interface: A Basis for End User Programming. Hewlett-Packard Laboratories, 1990. http://

www.miramontes.com/writing/spreadsheet-eup/.

. “Twinkling Lights and Nested Loops: Distributed Problem Solving and Spreadsheet Development.”

International Journal of Man-Machine Studies 34, no. 2 (1991): 161-184.

Nickerson, Jeffrey. “Visual Programming,” 1994.

Pane, John, and Brad Myers. “Usability Issues in the Design of Novice Programming Systems,” 1996. http://
repository.cmu.edu/isr/820/?utm_source=repository.cmu.edu%2Fisr
%2F820&utm_medium=PDF&utm_campaign=PDFCoverPages.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, 1980.

Pattis, Richard E. Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley & Sons, Inc., 1981.
http://dl.acm.org/citation.cfm?id=539521.

Pears, Arnold, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens Bennedsen, Marie Devlin, and
James Paterson. “A Survey of Literature on the Teaching of Introductory Programming.” ACM SIGCSE Bulletin
39, no. 4 (2007): 204-223.

Perlman, Radia. “Using Computer Technology to Provide a Creative Learning Environment for Preschool Children (PDF
Download Available).” ResearchGate. Accessed January 31, 2017. https://www.researchgate.net/publication/
37596649_Using_Computer_Technology_to_Provide_a_Creative_Learning_Environment_for_Preschool_Childre
n.

Rajala, Teemu, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. “VILLE: A Language-Independent Program
Visualization Tool.” In Proceedings of the Seventh Baltic Sea Conference on Computing Education Research-
Volume 88, 151-159. Australian Computer Society, Inc., 2007. http://dl.acm.org/citation.cfm?id=2449340.

Repenning, Alex. “Agentsheets,” 1993.

. "Agentsheets: A Tool for Building Domain-Oriented Visual Programming Environments.” In Proceedings of the

INTERACT'93 and CHI'93 Conference on Human Factors in Computing Systems, 142-143. ACM, 1993. http://

dl.acm.org/citation.cim?id=169119.

Repenning, Alexander. “AgentSheets®: An Interactive Simulation Environment with End-User Programmable Agents.”
Interaction, 2000. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2039&rep=rep1&type=pdf.

Repenning, Alexander, Andri loannidou, and John Zola. “AgentSheets: End-User Programmable Simulations.” Journal
of Artificial Societies and Social Simulation 3, no. 3 (2000): 351-358.

Repenning, Alexander, and Tamara Sumner. “Agentsheets: A Medium for Creating Domain-Oriented Visual
Languages.” Computer 28, no. 3 (1995): 17-25.

Repenning, Alexander, David Webb, and Andri loannidou. “Scalable Game Design and the Development of a

Checklist for Getting Computational Thinking into Public Schools.” In Proceedings of the 41st ACM Technical

Symposium on Computer Science Education, 265-269. ACM, 2010. http://dl.acm.org/citation.cfm?
id=1734357.

Resnick, Mitchel. “StarLogo: An Environment for Decentralized Modeling and Decentralized Thinking.” In Conference
Companion on Human Factors in Computing Systems, 11-12. ACM, 1996. http://dl.acm.org/citation.cfm?
id=257095.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon
Millner, et al. “Scratch: Programming for All.” Communications of the ACM 52, no. 11 (2009): 60-67.

Resnick, Mitchel, and Brian Silverman. “Some Reflections on Designing Construction Kits for Kids.” In Proceedings of
the 2005 Conference on Interaction Design and Children, 117-122. ACM, 2005. http://dl.acm.org/citation.cfm?
id=1109556.

Richmond, Barry. “STELLA: Software for Bringing System Dynamics to the Other 98%."” In Proceedings of the 1985
International Conference of the System Dynamics Society: 1985 International System Dynamics Conference,
706-718, 1985.

Robins, Anthony, Janet Rountree, and Nathan Rountree. “Learning and Teaching Programming: A Review and
Discussion.” Computer Science Education 13, no. 2 (2003): 137-172.

Sloman, Aaron. “Interactions between Philosophy and Artificial Intelligence: The Role of Intuition and Non-Logjical
Reasoning in Intelligence.” Artificial Intelligence 2, no. 3-4 (1971): 209-225.

Smith, David Canfield. “Pygmalion: A Creative Programming Environment.” Stanford University, 1975.

Smith, David Canfield, Allen Cypher, and Jim Spohrer. “KidSim: Programming Agents without a Programming
Language.” Communications of the ACM 37, no. 7 (1994): 54-67.

Soloway, Elliot. “Learning to Program= Learning to Construct Mechanisms and Explanations.” Communications of the
ACM 29, no. 9 (1986): 850-858.

Soloway, Elliot, and James C. Spohrer. Studying the Novice Programmer. Psychology Press, 2013. https://
books.google.com/books?
hl=en&lr=&id=vFhEAgAAQBAJ&oi=fnd&pg=PP1&dg=related:YCK2JCuULtAJ:scholar.google.com/
&ots=W21hSInEAO&sig=gw8EMZQYc1bCcvqOc27j_SDMJUO.

Sorva, Juha. “Notional Machines and Introductory Programming Education.” ACM Transactions on Computing

Education (TOCE) 13, no. 2 (2013): 8.

. Visual Program Simulation in Introductory Programming Education. Aalto University, 2012. https://

aaltodoc.aalto.fi’handle/123456789/3534.

Sorva, Juha, Ville Karavirta, and Lauri Malmi. “A Review of Generic Program Visualization Systems for Introductory
Programming Education.” ACM Transactions on Computing Education (TOCE) 13, no. 4 (2013): 15.

Sorva, Juha, Jan Lénnberg, and Lauri Malmi. “Students’ Ways of Experiencing Visual Program Simulation.” Computer
Science Education 23, no. 3 (2013): 207-238.

Sorva, Juha, and Teemu Sirkia. “UUhistle: A Software Tool for Visual Program Simulation.” In Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, 49-54. ACM, 2010. http://dl.acm.org/
citation.cfm?id=1930471.

Stewart, lan. “Commuters and Computers: The Intelligent Subway,” 2008.

Suzuki, Hideyuki, and Hiroshi Kato. “AlgoBlock: A Tangible Programming Language, a Tool for Collaborative
Learning.” In Proceedings of 4th European Logo Conference, 297-303, 1993. https://www.researchgate.net/
profile/Hideyuki_Suzuki5/publication/
242383829_Algoblock_a_tangible_programming_language_a_tool_for_collaborative_learning/links/
575f5c8e08ae414b8e5496e3.pdf.

Weinberg, Gerald M. The Psychology of Computer Programming: Silver Anniversary Edition. Anl Sub edition. New
York: Dorset House, 1998.

Williams, Michael D., James D. Hollan, and Albert L. Stevens. “Human Reasoning about a Simple Physical System.” In
Mental Models, edited by D. Gentner and A. Stevens, 131-154, 1983. https://books.google.com/books?
hl=en&Ir=&id=G8iYAgAAQBAJ&oi=fnd&pg=PA131&dg=Human+reasoning+about+a+simple+physical
+system.+&ots=alLvRSVGyfA&sig=DOIN5oGnXtymcFXy4wFd-YyOLN4.

Wing, Jeannette M. “Computational Thinking.” Communications of the ACM 49, no. 3 (2006): 33-35.

. "Computational Thinking and Thinking about Computing.” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 366, no. 1881 (2008): 3717-3725.

Winslow, Leon E. “Programming Pedagogy—a Fsychological Overview.” ACM Sigcse Bulletin 28, no. 3 (1YY6): 1/-22.

