
Survey

Gadget
Stage 1 of Gadget examined a large swathe of
prior works related to the Gadget project. We
conducted an open-minded and thorough
survey of related work, from Smalltalk to
Minecraft. We surveyed 48 different systems,
producing one page visual distillations for
each.

1

Chaim Gingold • Wed Jul 05 2017

Gadget
Purpose. The Gadget project combines cutting edge ideas from programming
languages and game design to invent new tools for novices learning to code as
well as expert users. It is predicated on the observation that some of the most
powerful ideas in the history of computers—from interface design to programming
languages—have come from making systems more tangible, alive, playful, and
accessible to children. Drawing on influences from Smalltalk to Minecraft, Gadget
seeks to build captivating play experiences that transform users into proficient and
creative computational thinkers. But Gadget is more than a playful tutorial; it aims
to transform the experience of programming itself.

Approach. The project is divided into four stages: survey, articulating design
values, prototyping, and design. In the first stage, we conducted an open-minded
and thorough survey of related work, from Smalltalk to Minecraft. We surveyed 48
different systems, producing one page visual distillations for each. In stage two, five
high level design values were distilled from the review: a quality of world-ness,
linked representation, tactile, personally meaningful, and directed and undirected
activity. In the third stage of the project, we will put these design values into action
by building and testing prototypes that push the envelope in programming
environment design. In the fourth stage we will summarize our learnings in the form
of a design for a new computational world.

Who. The Gadget project builds upon the combined background and expertise of
Dan Ingalls and Chaim Gingold. Among his many seminal contributions to
computing, Dan Ingalls has contributed to making programming more tangible,
alive, and open to creative improvisation (e.g. Squeak and Lively). Chaim Gingold
brings to the project expertise in designing simulations, play experiences, and
creative tools. Recent projects include using simulation toys as book illustrations
(Earth Primer), and investigations into diagrammatic representations of software
(Ph.D. dissertation).

1
2
3
4

I fell in
love with
the
gears.”

Survey
“You can be the gear, you can understand how it turns by projecting yourself
into its place and turning with it. It is this double relationship—both abstract
and sensory—that gives the gear the power to carry powerful mathematics
into the mind. In a terminology I shall develop in later chapters, the gear acts
here as a transitional object.”

“I fell in love with the gears.”

“My thesis could be summarized as: What the gears cannot do the computer
might. The computer is the Proteus of machines. Its essence is its universality,
its power to simulate. Because it can take on a thousand forms and can serve a
thousand functions, it can appeal to a thousand tastes. This book is the result
of my own attempts over the past decade to turn computers into instruments
flexible enough so that many children can each create for themselves
something like what the gears were for me.”

—Seymour Papert, Mindstorms (1980)

“
Chaim Gingold

July 05, 2017
YCR / HARC / Lively

I fell in
love with
the
gears.”

“

Seymour Papert, Mindstorms (1980)

Mouse in the Maze
John E. Ward and D.T. Ross (1959), TX-0

Probably inspired, in part, by Theseus, Shannon’s 1952 electromechanical maze solving mouse.
Theseus was an early effort to make problem solving machines—Shannon would later create one
of the first chess playing computers (Caïssa).

The mouse is perhaps the earliest computer virtual computer characters (predating Weizenbaum’s
Eliza), and set the stage for the seminal computer game SpaceWar!

The mouse would could get tuckered out if it found no cheese, and needed to be fed to keep its
energy going. If cheese was inaccessible, the mouse—after exploring all available space—would
complain, “typing out an appropriate comment on the typewriter,” and be discouraged until fed
again (Ward 1959). Graetz describes a tipsy mouse in a variant mode with martinis not cheese
(Graetz 1981).

Mouse in the Maze is one of the oldest software toys. Using a light pen, players would design
mazes by erasing and making walls, place cheese, and place a mouse. The mouse would then
search for the cheese.

Cellular Automata
(1952–)

Cellular automata are a simulation tradition whose roots lie in a synthesis of biology and
computation. John von Neumann wished to create a mathematical model of biological self-
reproduction, and following a suggestion by Stanisław Ulam, settled upon a lattice of interacting
identical elements as a modeling substrate—not unlike the discrete models used for computer
weather simulations. (Turing, also, used a similar model for thinking about morphogenesis in 1952).

Space itself is a computational substrate, a mesh of identical interacting components. Higher level
structures, for the example the self-reproducing machine above, are said to embedded in the
cellular space. One of the most famous cellular automata is John Conway’s Game of Life, which
beautiful exemplifies the emergent potency of such systems.

The highly observable nature of such systems, coupled with their representational plasticity, and
emergent potential, affords a high degree of player agency and a flexible variety of applications,
from biological reproduction and physics to game worlds.

Sketchpad
Ivan Sutherland (1963), TX-2

Sketchpad is a seminal program in the history of computing, combining and introducing a variety of
ideas: graphical man-machine communication (direct manipulation), instances and masters
(inheritance), and constraints. Sutherland writes that “Sketchpad is itself a model of the design
process,” as designers primarily work with and produce drawings, and the primary concern of design
is fashioning within constraints.

Sutherland, Ivan E. “Sketchpad a Man-Machine Graphical Communication System.” Transactions of the Society for
Computer Simulation 2, no. 5 (1963): R–3.

Masters can define attachment points, as well as simply be ”constraint
complexes” applicable to appropriately typed objects, allowing
libraries of smart objects to be recursively built up. A switch shows/
hides constraints as manipulable screen elements.

Merging—of points, lines,
constraints, composite shapes—
allows complex objects to be built
up. By merging line endpoints
polygons can be built up. Merging
a “constraint complex” to a shape
applies that operation to a shape.

July 05, 2017
Page 7

On-Line Graphical Specification of Computer Procedures
William Sutherland (1966), TX-2

Sketchpad is for graphical representation of data, but OLGSCP is for graphical representation of
programs. Programs are represented as data-flow diagrams.

Many ingenious debugging features are offered. Variable values can be shown on the wires. Probes
and breakpoints can be inserted into the program.

Automatic connections, inferred by
proximity and data type, aid the
creation of complex programs.

A user created symbol/function,
and its definition.

July 05, 2017
Page 8

Logo
Seymour Papert, Wally Feurzeig, Cynthia Solomon; BBN (1967–)

Image from http://battle-bot.blogspot.co.uk

The turtle was inspired by
William Walter’s autonomous
tortoise robots.

Early versions of Logo used tangible robots to perform programs—
moving around and drawing pictures. Later, a virtual turtle on a
computer screen was used. The turtle has “holding power” (it’s fun),
and affords “playing turtle” (identification). (Papert 1987)

Logo was intended to create a living world, a culture, in which a domain—in this case mathematics—
could be easily absorbed by young learners. Just as French is most easily learned by children in
France, Papert sought to create a microworld—mathland—in which children could easily learn math.

https://www.youtube.com/watch?v=fTO-Ruby-Uo Uploaded by Cynthia Solomon

Papert argued that linking the abstract and the sensory—for example performing a program or shape
—was a powerful way to link multiple representations. He called this body linkage “body syntonic.”
The turtle functions as a “transitional object” between the self and a domain (Papert 1980).

The turtle functions as a vital “body syntonic” link between a person and the domain. A classic
example is closing your eyes and walking in a circle to gain an understanding of how to make a circle.

July 05, 2017
Page 9

GRAIL (Graphical Input Language)
Ellis, Heafner, Sibley, Groner, and others (1969).

In GRAIL, users draw graphical flow-charts in order to write software. It was used to make
sophisticated programs—the GRAIL system, for example, is written in itself. Users draw pictures, write
characters, and manipulate virtual objects. It used a tablet and CRT, and was developed at RAND
Corporation.

Once they have been drawn and recognized,
objects can be moved (top-right handle) and
resized (bottom-right handle).

Kay, Alan. “Doing with Images Makes Symbols.” presented at the Higher Education Marketing Group, Apple Computer, Inc.,
1987. (Video stills.)
Ellis, T. O., John F. Heafner, and W. L. Sibley. “The GRAIL Project: An Experiment in Man-Machine Communications.” Rand,
1969.
Ellis, Thomas O., John F. Heafner, and W. L. Sibley. “The GRAIL Language and Operations.” Rand, 1969.
Groner, Gabriel F. “Real-Time Recognition of Handprinted Text.” RAND, 1966.

Programs can be compiled and run at full
speed, or stepped through with a debugging
interpreter that can run the program at
variable speeds.

July 05, 2017
Page 10

TORTIS, The Button Box
Radia Perlman (1974)

3. Memory Box
• Start remembering
• Stop remembering
• Do it
• Forget it
(Works in conjunction
with a display.)

4. Four Procedure
Box.
• Remember and
playback multiple
procedures; allows
subprocedures.

1. Action Box
• Forward, Back
• Rotate
• Toot Horn
• Pen Down, Up
• Light On, Off

TORTIS stands for Toddler's Own Recursive Turtle Interpreter System. System for introducing
programming to pre-literate children for Logo. Boxes with buttons on them are introduced,
graduating from puppeteering to programming. As proficiency increases, new boxes are introduced
that plug into and expand possible actions.

Memory displays for one and four memory boxes.

Images from Perlman (1976), which has some fantastic
observations about what worked and didn’t work. Photos
from http://cyberneticzoo.com/tag/radia-perlman/

All boxes together.

2. Number Box
Push a number
before an action,
and the action is
done that many
times. Stop
interrupts action.

TORTIS, The Slot Machine
Radia Perlman (1976)

The slow machine design was intended to address some of the shortcomings in TORTIS—that the
commands are stored to memory “by the child, not by some magic that occurs when it somehow
enters a different mode.” (Perlman 1976). She had noted that children attended to the reactive display
in Button Box when storing things to memory, and used the memory mode as a way to achieve visual
effects on the display—not it’s intended use at all. The Slot Machine made the memory elements
tangible. Cards allow the language to gradually grow in complexity—like the Button Box.

See also Morgado et al. (2006) Radia Perlman – A pioneer of young children computer programming.
Photogram from Morgado et al. (2006), other images from Perlman (1976).

Program to “draw a square and toot,” and another to draw a spiral.

Action and movement cards.

Since the display wasn’t needed to sow
program memory, Perlman used the screen
as the primary output.

Some of the drawings shown here, (from
Perlman 1976), are speculative designs.

SimKit
Adele Goldberg and the Smalltalk team (1976)

Information on SimKit is meager. Best descriptions are in:
Kay, Alan. “The Early History of Smalltalk.” SIGPLAN Not. 28, no. 3 (March 1993): 69–95. doi:
10.1145/155360.155364.
Kay, Alan. “Learning Research Group Report. January - June 1978.”

Smalltalk job shop simulation tool made for end-
users (executives). Each executive participant had a
private machine and tutor.

Notable features:
• Animating graphics.
• Smalltalk errors translated into meaningful
simulation events.
• Mouse tutorial via customization of text size for
readability on initiation.
• Custom class browser for four SimKit classes:
station, worker, job, report.

ThingLab: A Constraint-Oriented Simulation Laboratory
Borning, Alan 1979
Built on Smalltalk

Highlights
• Constraint based
• Bidirectional data flow (follows from constraints)
• Spatial
• Lends itself to multiple domains; a kit of kits.
Examples include electronics, structural
engineering (bridge), geometry (proof-ish), and
algebra (Farenheit-Celcius converter).

http://esug.org/data/HistoricalDocuments/ThingLab/ThingLab-v.html

Boxer
Andrea diSessa (1982)

In Boxer, “[o]bjects are their visual representation,” and behave according to “naive realist”
rules (like Rocky’s Boots). Boxer is predicated on the idea of “surrogates”—“replacement
machines” you think and predict with (for example a physical stack of things as a computational
stack.) The interface is built around editing and browsing, extending what diSessa thinks is one
of the most powerful ideas in Smalltalk, its browser, which allows you to dive into and inspect
anything.

Boxer is environment centric. It is composed of places with procedures and data—environments
that one can experiment in. Boxes can be data, procedures, graphics, and ports. Ports are
wormholes into boxes located elsewhere, a powerful idea that enables GUI windows as well as
scoping mechanics.

Boxer is a programming environment that employs a comprehensive spatial metaphor for
everything: boxes.

Questions
• What sense of world-ness is shared with something like Rocky’s Boots?
• Is “naive realist”—which sounds like Rocky’s Boots—another way of saying direct manipulation?
If not, why not? Is it more general? Specific? Orthogonal?
• Can this blend smoothly into a spreadsheet like representation? (grids of boxes)

Rocky’s Boots
Warren Robinett and Leslie Grimm, 1982
Apple II (and other platforms)

Highlights:
• Logic circuit construction set.
• Multiple ways to engage:
- As a spatial world to explore (like Robinett’s Adventure)
- As a sandbox—build and experiment
- As a game. Build circuits that satisfy recognition constraints.
• Gentle on-ramping; traverse spatial world to learn how to play.
• User interface is hampered by a lack of mouse (even more so in
emulation, perhaps.)

One of the many carnival-like game puzzles.
Design a circuit that recognizes blue crosses.
When boot is activated it kicks the shapes.

Loose parts create a sandbox effect.

A spatial journey playfully introduces the
game.

As in HyperCard, even the explanatory
materials can be played with—taken apart,
recombined, and transformed.

Pinball Construction Set
Bill Budge, 1982 (BudgeCo, Apple II), 1983 (Electronic Arts, other platforms)

Highlights:
• Design and play simulated pinball machines.
• Established “construction set” and “software
toy” genres, settings the foundation for things
such as SimCity.
• First commercially available PARC/Apple
inspired graphical user interface.
• Pinball is a kind of computational machine.
• In addition to machine layout, you can tweak
the laws of physics, and map scoring and sound
relationships.

Smith et al. (1994) describe it as
“programming by direct manipulation”—in
the domain of pinball games. “The elements
begin functioning as soon as they are
dropped into place.” The challenge they set
out is to “increase the generality without
losing the ease of use.”

Spreadsheet
First: Visicalc by Software Arts (1983)

• Data centric. Input/output always visible.
• Organize data in tabular form.
• Cells can only contain formulas, and show the
result of those formulas.
• Instant and incremental feedback.
• Spatial. References are spatial.
• Non-spatial references are hard; can’t easily
refactor functions and variables out of the table.
• Graduated involvement and learning. Begin
by reading a sheet, then tinker with data and
templates, modify, and finally create your own.

Visicalc on an Apple II

The spreadsheet is credited with establishing the personal computer industry, transforming it
from a hobbyist pastime to an essential business tool. The spreadsheet has also been an
evocative object to “think with” (Turkle 1984) for computer scientists—e.g. Alan Kay (1984a;
1984b) and Terry Winograd (Winograd 1996).

• Bridges program and data, bridging
programmer and user (Winograd 1996).
• Introduces a powerful new representation, a
“virtuality” (Nelson, Winograd) of a computing
data sheet; can be seen as domain specific
(Nardi). However, it is a highly abstract
abstraction pattern.
• As an externalized shareable cognitive
instrument, it engenders fluid sharing and
learning, becoming a communal practice (Nardi
1993).

Google Sheets Illustration from Alan Kay (1984) “Computer Software.”

Robot Odyssey 1
Mike Wallace and Leslie Grimm, 1984
Apple II (and other platforms)

 Highlights:
• An elaborate extension of Rocky’s Boots
(Auerbach 2014).
• Extremely difficult. (Intended sequel never made.)
• Adventure game structure. Overcome puzzles
that impede your journey.
• World editor (I think)—tools for authoring the
world are included and exist inside of the game.
• Fully recursive: design and burn circuits; put
robots in one another.

The inside of a robot. Go inside to connect
logic to various ports: thrusters, grabbers,
battery, eye, antenna, bumpers, etc…

The outside of your robots, which
autonomously move around a living robot
city. They can be placed inside of one
another.

Auerbach, “The Hardest Computer Game of All Time.” Slate. (2014)

Steamer
Hollan, Hutchins, and Weitzman (1984)

Steamer is an “interactive inspectable simulation” of a steam ship. It is a dynamic and hierarchical
“dynamic graphical explanation” of a non-trivial domain—the propulsion system of a Navy ship,
modeled in about 100 different diagrams. It also includes an authoring tool for the diagrams.

Hollan, Hutchins, and Weitzman (1984) STEAMER: An Interactive Inspectable Simulation-Based Training System.

Color images from http://pages.ucsd.edu/~ehutchins/Steamer.html

System overview. Diagram of subsystem.

State as traditional gauges
Highlights (paraphrasing the article):
• Allows users to interact with a concrete
version of the mental models experts use.
• Internal state can be monitored and
manipulated.
• The authoring tool can be used to
create “mini-labs”.
• “Presenters” discuss how things work,
including “procedures,” “mappings from
abstract abstract generic components
and procedures to particular instances.”

Stella
Barry Richmond (1985)

Given how visual and diagrammatic Jay Forrester’s notation for system dynamics designs was, it
is perhaps unsurprising that an authoring tool like Stella came along. STELLA stands for Structural
Thinking Experiental Learning Laboratory with Animation. An explicit goal was to bring System
Dynamics to a broader audience by baking in expert knowledge—“model-creation heuristics”—
about the modeling domain in order to bring system dynamic model making to a broader
audience. Richmond thought that courses and apprenticeships were an inefficient way to spread
the practice.

What if, as Alan Kay has suggested in an email to HARC, system dynamics models were animated
with particles flowing through the system?

Richmond, Barry. “S℡LA: Software for Bringing System Dynamics to the Other 98%.” In Proceedings of the 1985
International Conference of the System Dynamics Society: 1985 International System Dynamics Conference, 706–
718, 1985.

It is interesting to note that Richmond was at Dartmouth, which also the home of another
attempt to bring programming to a broad audience: BASIC. In many ways, Stella is the logical
successor to Forrester’s notation system—carried forth into the era of interactive graphical
simulations and direction manipulation interfaces. It’s also interesting that it, like Steamer, mark a
turn to thinking of expert systems as taking the form of user interfaces—more augmentation than
intelligence.

Fabrik: A Visual Programming Environment
Dan Ingalls et al., 1988
Built on Smalltalk (Mac)

Highlights
• Kit (Primitives, Navigable palette and program,
Connectable)
• “Concrete manipulation”:
 • Example state always present.
 • Spatial layout and connectivity. (“Visual
metaphor” “encompasses” “browsing, testing,
connecting” and “using.”)
• “User frame”—designate parts of the diagram
as external vs. internal.

User frame

SimCity
Will Wright et al., Maxis (1989)

SimCity

Playground
Fenton and Beck (1989), along with Kay, Marion, Beck and Wallace.

Part of the Vivarium project, Playground is an object-oriented language designed for children.
The idea was that children would imbue graphical objects with rules, “turning them loose in an
envorinment” and thus gain an appreciation for “complex dynamic systems.” Particular
inspiration is taken from biological systems, which seems to inform many of the examples.
Reading Fenton and Beck, the system design sounds like an important historical keyframe
between Smalltalk and Squeak, E-Toys, and Scratch.

Fenton, Jay, and Kent Beck. “Playground: An Object-Oriented Simulation System with Agent Rules for Children of
All Ages.” ACM SIGPLAN Notices 24, no. 10 (1989): 123–137.
Kay, Alan. “Computers, Networks and Education.” Scientific American 265, no. 3 (1991): 138–148.

At first, the program appears to be a drawing
program—shape objects, bitmaps, text, and
aggregate objects are edited via direct
manipulation. This structure is recursive, as
objects can be opened up, revealing itself to be
another playfield containing agents.

Programs are described in terms of causal
relations and an “English-like syntax.” The
authors also speculate that comic book
panels could be a good representation for
programs.

Given their biological impetus, and talk of
sign stimulus and drive centers, it’s unclear
why they didn’t offer, as programming
representations, (a) behavior trees, and (b)
visual diagrams.

Agentsheets
Alexander Repenning (1993–)

The basic tool palette
is also a gallery,
defined in simulation
terms.

Agent Sheets draws upon a similarly spirited broad field of
paradigms: artificial life, visual programming, “programmable
drawing tools,” “simulation environments”, games, cellular
automata, and “spreadsheet extensions.” Repenning draws upon
these shared characteristics: visual, spatial notation, dynamic, direct
manipulation, and incremental agency.

Interacting agents are embedded and interact within
cellular spaces called sheets. Agents are reactive to
direct manipulation and have autonomous behavior.

Highlights:
• Kits (“agencies”) describe specific domains. One effect of “|ayered”
design is “roles”—end-users vs. scenario designers. Example domains in
thesis: Turing machines, circuits, flow, traffic, programs.
• Sheet is a cellular 2d space, but agents can be stacked up in a cell.
• Incremental refinement of art, behavior, etc…
• A highly generalize idea of flow is used for things like neural nets, flow
charts, water flow, circuits, system dynamic style models, and traffic.
• It also supports ecological style spatial simulations.
• User interaction and agent communication is in the same
representation. i.e. Anything can do to one another everything the user
can.

Repenning (1993) Agentsheets. Ph.D. thesis.

Circuit

Turing Machine

Water Flow Flow

Flow-chart style programming

Neural net

AlgoBlock
Hideyuki Suzuki and Hiroshi Kato (1993)

AlgoBlock is designed to facilitate collaborative, socially situated, and meaningful (authentic)
learning. They write that “learning is a process of enculturation through social interactions.” The
authors envision programming languages as “conversational artifacts” that scaffold “interactions
among learners.”

Suzuki and Kato, 1993. AlgoBlock: a Tangible Programming Language - a Tool for Collaborative Learning.

The primary point of departure from traditional languages—e.g. Logo—is reimagining the screen
based user interface, which affords interaction only by a few viewers, with a tangible block
interface. The program controls the behavior of an agent, an underwater submarine, in a
simulated microworld. Program blocks represent Logo inspired movement commands and
control structures. Some blocks have physical switches on them for parameter control.

Ease of use facilitates immersion in group activity rather
than the tool itself. Furthermore, it “promotes trail-and-
error,” which stimulates interaction. Tangibility affords
“simultaneous accessing” and “mutual monitoring”—
everyone can observe and interact with the shared
representation and activity. Tangibility also encourages
learners to engage in natural turn taking behavior.
Tangibility enables a repertoire of actions and coordinating
gestures from the physical world to come into play:
reaching out, pointing, looking at, turning towards, holding,
etc…

KidSim (later Cocoa, then Stagecast Creator)
Smith, David C., Allen Cypher, and James Spohrer (1994)

In KidSim graphical simulations are created via
graphical rewrite rules, which also enables a
kind of programming by demonstration.

Smith, David C., Allen Cypher, and James Spohrer (1994)

The creators argue that most people can use
editor GUIs (e.g. paint programs), and can
give directions, but cannot program. Their
solution is to “get rid of the programming
language” in favor of a philosophy grounded
in GUI design:
• Visibility. Relevant information is visible;
causality is clear; modelessness.
• Copy and modify, not make from scratch.
• See and point, not remember and type.
• Concrete, not abstract.
• Familiar conceptual model. (“minimum
translation distance”).

They choose a symbolic simulation microworld
as a domain because it leads to knowing,
ownership, and motivation.

All objects are agents which have
appearances, properties (name value pairs),
and rules.

Specifying the scope of a rewrite rule.

One of the creators of KidSim, David
Smith, was also the creator of another
graphical programming environment:
Pygmalion.

Programming by demonstration extends to
using a calculator and dragging properties
around to define conditionals.

Visual AgenTalk
Repenning and Ambach (1996)

The authors describe tactile programming as
“Perception by manipulation”. You touch and
poke and prod to learn about—not just the
simulated world, but the code itself—as well
as fragments of that code. In this, there are
echoes of Scratch, where you can click on
code fragments to run them, and hover over
expressions to see their values.

Program fragments can be dropped onto
objects. This also has the lovely feel, which
they hint at, of lambdas—programs as first
class objects that can be sent as messages to
other objects.

Repenning and Ambach (1996) “Tactile programming”

This paper argues for an augmentation to visual programming they call tactile programming.
The idea here being that program definitions—including program fragments—are dynamic and
reactive things that can be run, manipulated, and shared.

The social dimension is also very important. Just as Scratch’s loose couplings between sprites
means greater ease of sharing, AgenTalk seeks to allow sharing at multiple levels of granularity,
from entire simulations to components such as objects and code fragments.

c-jump
Igor Kholodov (1997)

http://www.c-jump.com

AlgoBlocks (from McNerney 2000); color image
from Internet.

McNerney 2000

Martin, F. Colobong, G. L., Resnick, M., Tangible
(1999) Programming with Trains (image from
McNerney 2000)

Processing
Ben Fry and Casey Reas (2001)

“Processing is a flexible software sketchbook and a language for learning how to code within the
context of the visual arts.” —processing.org

Processing is basically Java with a wrapper GUI and a simple and easy to learn set of APIs for
drawing, making sound, etc… It has proven to be extremely popular, and now has a Javascript/
web incarnation (p5.js).

Why is Processing so successful? Some ideas:
• Targets one domain/community: visual arts.

• Focuses system design
• Motivational frame

• Programming is quickly gratifying: art,
animation, and interaction!
• Caters to learners and experts.

• Not a toy environment
• Easy to play around (“sketchbook”)
• Easy stuff is easy, hard stuff is possible
• Straightforward examples.

• API exposes key computational and
graphical concepts as simple primitives.

Images credits: processing.org gallery and
http://www.realtimerendering.com.

EToys
(1997), built in Squeak

Squeak EToys is an authoring environment for children to think, learn, and create with. It
descends from the tradition of Logo, Smalltalk, HyperCard, and emphasizes kinesthetic learning
and play as gateways to learning powerful ideas. Scaffolding is intended to be done by teachers,
not peers (like Scratch) or games (like Rocky’s Boots), and the underlying motivation for
engagement is pedagogical, not self-expression (like Scratch).

While the interface is powerful, it can be overwhelming and awkward to manipulate. It lacks
overviews, and there are multiple spatial/containment hierarchies—the visual world of objects,
and an internal hierarchy of objects—to keep clear.

EToys is a spatial, visual world. Objects have locations, sizes, costumes, and headings. They can
draw like Logo turtles, and communicate via the framebuffer, exhibiting bitmap costumes and
sensing pixels in the framebuffer (SimCity’s maps functions similarly). Self-driving cars and Rocky’s
Boots style simulations are easy to make.

EToys offers inspectors for seeing and
modifying things in visual and symbolic forms.
The inspectors are quite plastic: variables and
code can be dragged into the world. The
EToys environment itself can be probed and
modified with the same tools.

Programming is done with tiles. These are
more expressive than Scratch, but
manipulation is clumsier. (e.g. attachment
combinatorics unclear, and they are hard to
disassemble.) Code can live anywhere—in a
script, in the world, as a single line or as a
script. Clicking “!” executes something,
offering a smooth ramp from puppeteering to
coding.

Scratch
Lifelong Kindergarten, MIT Media Lab (2004)

Scratch is tool for kids to make “personally meaningful” programs like “animated stories and
games”. It supports “self-directed learning through tinkering and collaboration with
peers.” (Maloney et al. 2004). At http://scratch.mit.edu, users can browse, play, comment on,
see inside, and remix projects.

Images from Maloney et al. 2010

expression result shown on
hover

Error shown in red.

Running block outlined in
white.

running command
highlighted in yellow
(both when single stepping
and running)

Data is concrete
—put it on the
stage to see it;
data changes are
animated.

Overviews: single window; short, browsable command set; color coded command tiles.

Tile based programming Game-like domain: sprites on a stage.

Liveness means code is always running. Tinkerability means even code fragments can be
run and experimented with—e.g. click any fragment to run it. There are no error messages;
tile shapes constrains combinations.

MineCraft
… ()

MineCraft

Dwarf Fortress
… ()

Dwarf Fortress

PaintCode
PixelCut (2012)

PaintCode is a production quality illustration program with parametric features that programmers
would love. You can design parametric illustrations and then export code (Swift, SVG, CSS) that
generates the art with parametric hooks.

An illustration of how colors
are parametrically
constrained/generated.

Colors and variables are threaded into object
properties—either on the canvas or through
the inspector.

Spatial constraints can be established between
special frames and shapes (and vertices),
allowing visually adjustable parametric systems
to be built up.

You can’t edit the code. The linked
representation can help you learn how to
program. Just flipping between output
languages (Swift, Objective C, etc…) is
educational. This is related to the idea of code
puppeteering—perform to see the
corresponding code generated.

In general, constraints in PaintCode are not
systemic (as in Apparatus), but special case per
feature; this is how it maintains a production
quality user interface that nonetheless captures
some powerful parametric features.

Lively Kernel
(2012)

• From SmallTalk: Inline Evaluate (and print) and Run. This idea has been rediscovered over and
over (e.g. Light Table).

code.org
Founded in 2013 by Hadi and Ali Partovi

Code.org offers a massive library of programming courses made up of highly accessible—and visually
polished—progressions of block based programming puzzles. It accommodates K-12 via courses
geared towards specific ages and grade levels. Multiple thematic entry points, including loads of
licensed IP, try to accommodate all tastes. The emphasis is on learning to code to solve given puzzles,
rather than programming as creative expression (e.g. Scratch).

Themed content. Videos

Google’s open source
Blockly JavaScript library
is used.

Python Tutor
Philip Guo (2013)

Visualizes the data structures and execution of programs. Runs on the web, is embeddable, and
has achieved a degree of widespread use.

This project points to ways in which
software description, data, and behavior,
can be represented and made tangible as
deeply and vivaciously interlinked
representations.

Python Tutor is a popular example of a multi-decade endeavor in computer science: program
visualization system for pedagogic ends. It also overlaps with another effort called software
visualization. Even the Atari 2600 had a BASIC cartridge exhibiting such characteristics, made
by Warren Robinett, the creator of Adventure (2600) and Rocky’s Boots (Apple II).

Some observations I pulled from surveys by Sorva and others (see references below):
• User motivation and engagement is critical. Sorva et al. (2013) argues that a constructionist
orientation is desirable: learners are “makers who want to build things,” which “can be
harnessed for better learning.”
• Level of abstraction of representation is an important choice. Are algorithms or program
execution represented? Abstractions chosen reflect the aims of the system builders.
• Emphasis tends to be on generic representations. What if, instead, we allowed that special
cased visual designs, perhaps by the programmer, were worthwhile?

For good surveys, see:
• Sorva, Juha. Visual Program Simulation in Introductory Programming Education. Aalto University, 2012.
• Sorva, Juha, Ville Karavirta, and Lauri Malmi. “A Review of Generic Program Visualization Systems for Introductory
Programming Education.” ACM Transactions on Computing Education (TOCE) 13, no. 4 (2013): 15.
See also:
• Guo, Philip J. “Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.” In
Proceeding of the 44th ACM Technical Symposium on Computer Science Education, 579–584. ACM, 2013.

Nile Visualization
Bret Victor (2013)

An interactive visualization of the Gezira/
Nile software by Dan Amelang, a
graphics renderer (Gezira) written in a
domain specific language (Nile).

This project points to ways in which
software description, data, and behavior,
can be represented and made tangible as
deeply and vivaciously interlinked
representations.

Hack 'n' Slash
Double Fine Productions (2014)

Hack ’n’ Slash is a traditional Zelda-like adventure game—an adventure game structure that
requires puzzle solving as well as action gameplay to progress—with a twist: instead of a sword,
you have a USB stick that can be used to inspect and modify (hack) everything in the world.

The primary mode of interaction is viewing and editing the property sheet of objects.

The game works best when it provides an experience that flirts with the boundary between in-
game debugging tools that a developer might use, and the experience of a typical genre game.
When the game veers off into basic scripting the experience falls apart, as the tools aren’t very
good.

Below, the player has revealed a visualization of normally invisible spatial data structures:

Shadershop
Toby Schachman (2014)

What if making shaders was more like using Photoshop than writing symbolic code? Shadershop
is a direct manipulation interface for constructing shaders out of primitive functions like lines and
sine waves, and binary operations like compose, add, and multiply.

Shadershop always shows you the expressed you have created at the bottom, helping you to
think across multiple representations. It works in both 1d and 2d domains.

I wish the expression, function hierarchy, and inspector helped me patterns across them more.
Perhaps inspector coordinates could be shown in the function hierarchy, and color patterning and
pointer interaction could help connect the symbolic expression with the functions. Maybe there is
some way to spatially connect the function hierarchy with the expression hierarchy—that would
be great.

Also, it would be nice if somehow the center of action—the main rendered display—would also
function as the primary place where you manipulate all composed functions. Of course this is
probably not practical with the 2d view, but it might in 1d.

http://tobyschachman.com/Shadershop/

Earth: A Primer
Chaim Gingold (2015)—With Cliff Caruthers (sound), Michelle Lee (illustration), and Laura Kaltman (title).

Narrative structure borrows from
• Books: segmentation (chapters, pages), order, and formal genre expectations.
• Games: completing objectives unlocks pages and tools.
Concepts are gradually introduced, creating a fluency gradient in both using the
program and geology.

Every aspect of the design is designed to foster
delight and wonder: simulation and tool
dynamics, interaction design, music, sound,
visuals, and animation.

Open-ended simulation play is encouraged
in the sandbox mode, and by allowing the
narrative intent of most pages to be
subverted by open-ended play.

Earth Primer is a science book illustrated with interactive toys.

Human Resource Machine
Tomorrow Corporation (2015)

A game about programming. Each stage asks you to write
an assembly language program that directs an office worker
(you) to manipulate blocks of data.

What works:
• Gentle progression.
• Each level is a simple programming challenge.
• Drag and drop code editor.
• Adjusting playback speed.
• Concreteness: data, program, character taking
action, animation.
• Player represented as a character in the
program, world, and story.
• Immersive world, story, characters, and music.
• Dialog.
• Optional optimization challenges (# instructions,
steps)

I wish:
• Output was meaningful information, not random
data.
• Output could be personally meaningful.
• I could puppet the worker directly to specify
action—we could close to this when indicating
registers, as we point to the world.
• I could drag program counter.
• More robust time travel debugging. You can
only rewind after the program fails. Pause
needed.
• World reacts, previews with data and activity,
program as I build it.
• Assembly is a liability and an asset.

Apparatus
Toby Schachman (2015), and Joshua Horowitz

“Apparatus is a hybrid graphics editor and programming environment for creating interactive
diagrams” (http://aprt.us). It’s central fantastic trick is that the diagram elements can be directly
manipulated, allowing the diagram and code to be played backwards and forwards. A
numerical solver is used to make the magic happen.

What works:
• Powerful causal linkages between visual and
parametric elements.
• Solver magically brings these bidirectional
linkages to life.
• System has a lot of expressive power.
• Clear linkage between visual and inspector
relationships.
• Combination of direct manipulation and coding.

I wish:
• Multiple representations—outline, inspector
view, constraints—were more consolidated,
ideally as manipulables in the main canvas.
• More responsive performance.
• An ecology of reading and writing:

• Easy to embed diagrams and make
content for them to live in.

• Easy to share components.
• Complex network of causal and hierarchical
relationships was somehow less dizzying.
• Improved graphics tools, e.g. color picker.
• Simulations: feedback loops and time.

g9.js
Guillermo Webster (2016)

g9 is a Javascript library for making interactive figures. It works like a stripped down version of
Apparatus. Figures are described as code, with the variables that move freely with user
interaction specifically called out. A numeric solver is used to find new values for these variables
in response to dragging of the generated svg graphic.

SimCity reverse diagrams
Chaim Gingold (2016)

Reverse diagrams (Gingold 2016) map and translate the rules of a complex simulation program into
a form that is more easily digested, embedded, disseminated, and and discussed (Latour 1986).

840

828

827

844

HBRDG0 … HBRDG3

LIGHTNINGBOLT

INDBASE2, TELEBASE TELELAST851

FOUNTAIN

s_traf.c/FindPTele(void) /* look for telecommunication on edges of zone */
Telecommunications

Park Fountain

Power Outage

Draw Bridge—Horizontal

832

RADAR0 … RADAR7

Airport Radar

Airport radar spins when
the airport has power.

Added by Don Hopkins to
OLPC SimCity/Micropolis.

Blinking lightning bolt
indicates a lack of power.

Bridges can open when boats
are nearby, and close when they
are far. BRWH bookmarks the
open bridge.

0

1 3

2

BR
W

H

HBRDG1

HBRDG0

HBRDG3

HBRDG2

R
IV

ER

R
IV

ER

s_sim.c/DoBridge() structures
this logic as a toggle between
two state configurations of a U
shaped tile layout.

RIVERRIVER

HBRIDGE

Placed parks have a 1 in 5
chance of being an animating
fountain, and a 4 in 5 chance
of being WOODS.

This blinking animation is not
done through the tile character
substitution technique, but is
done while rendering the tiles
to the screen.

CHANNEL

827-851Animation Characters

PTLScan()

FireAnalysis()

DecROGMem()
DecTrafficMem()

MapScan()

Pollution &
Land Value 12

Population Density
PopDenScan()

14

Decay Traffic
& Rate of Growth
Maps

10 Power Scan
DoPowerScan()11

–

Police St.
PoliceMap[]

1:8

Smooth•3

Smooth•2

Com.
Rate

ComRate[]

1:8

Power
PowerMap[]

1-bit

Terrain
TerrainMem[]

1:4

8 bit
8 bit

16 bit

16 or 1 bit

15 × 13Small1:8
30 × 25
60 × 50

120 × 100

Quarter
Half
Full

1:4
1:2
1:1

+

+

Smooth•1

Smooth•3

–

–

Map Data Flow

Fire St.
FireStMap[]

1:8

visible to player

Smooth•3

Fire
Radius

FireRate[]

1:8

Crime
CrimeMem[]

1:2

Land
Value

LandValueMem[]

1:2

Pollution
PollutionMem[]

1:2

Traffic
Density

TrfDensity[]

1:2

Rate of
Growth

RateOGMem[]

1:8

Map
Map[]

16-bit tiles

Pop.
Density

PopDensity[]

1:2

Police
Radius

PoliceMapEffect[]

1:8

13 Police Coverage
& Crime
CrimeScan()

Fire
Coverage15

Map
Scan

1...8

CrimeAverage

City Center
CCx, CCy

Pollution Max

PolMaxX, PolMaxY

PollutionAvg

Avg. Land Value

LVAverage

+

+

–

+

+

+

Temporary Maps

S. Temp

Q. Temp

Temp 2

Temp1:2

1:4

1:8

Com. Rate

1:8 Rate of Growth

Population Density

1:2 Traffic Density

Fire St.

1:8 Fire Radius

Map
Map[]

16-bit tiles

1:8

1:4

1:2

1:1

Maps come in four resolutions.
Lower resolution data maps use
fewer cells to represent the same
space.

Status bits

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

! "#$

Each Map[] cell is 16 bits. The low 10 bits
specify the tile character, and the high six
status bits can be conceptualized as six 1-bit
maps.

Primary Map Data

Police St.

Police Radius

1:2

1:8

Crime

Power1:1

"PWRBIT

CONDBIT !

BURNBIT

#BULLBIT

$ANIMBIT

ZONEBIT

Character

Bits 0…9

1:1

Terrain

Pollution

Land Value1:2

1:4

Maps

Character bits

SimCity's spatial data is modeled in
multiple maps that can be
conceptualized as overlaid upon one
another.

Pollution and
Land Value

Power

Crime and Police

Fire Coverage

Traffic and
Population Density

Rate of Growth and
Commercial Rate

The main Map is 120x100 and
encodes seven different data layers.
The low 10 bits specify one of
SimCity's 956 characters. The high six
bits encode various tile properties:
whether this tile is a zone, it
animates, is bulldozable, burnable, a
conduit, and is powered.

Police St. records the locations of police
stations during Map Scan, and is modulated
and blurred to produce the Police Radius.
Crime map is a function of population
density, police radius, and land value.

Fire St. records the locations of police
stations during Map Scan, and is modulated
and blurred to produce the Fire Radius.

Mainly used as temporary buffers in
smoothing operations.

Commercial Rate measures nearness
to the city center, and is normalized
to -64…64. 64 means at city center,
and -64 means >= 32 tiles away.

Terrain is a temporary buffer used in
calculation of Land Value. It is a smoothed
representation of where nature is.

Map Scan

The main tile map is scanned
incrementally over eight simulation
frames. One 15x100 column is
scanned at a time (1/8th of the
map). Tile map based processes and
objects tallies are updated.

Fire

4x4

3x3

6x6

Zones/buildings are attended
to by identifying cells with
ZONEBIT on.

Fires are updated (with 1/4 chance)
via DoFire(), which extinguishes
and spreads them.

Road

The last four frames of animating
rubble tiles (SOMETINYEXP…
LASTTINYEXP) are converted into
plain old RUBBLE that the player
can bulldoze and build on.

Clear Animation
Rubble

DoRoad() randomly deteriorates
roads if road infrastructure isn't
fully funded. Bridges open and
close when the ship is nearby, and
tiles are changed to reflect the
Traffic Density map.

DoHospChur() transforms a
hospital or church back into an
empty Residential zone if there
are too many hospitals or
churches per capita.

Hospital, Church

Residential, Commercial, and
Industrial zones grow and decay
based upon algorithms defined in:
• DoResidential()
• DoCommercial()
• DoIndustrial()

RCI Zones

Rail
DoRail() randomly deteriorates
rail if road infrastructure isn't
fully funded. Generates a train.

If power is on, the radar
animation is turned on, and an
airplane and helicopter are
generated.

Airport

1/2^12 chance of turning into
rubble.

Radioactive decay

The seaport generates a ship if it
has power. Seaport does not
actually need to be near water.

Seaport

Zone cells read PowerMap[] and update
their powered status via SetZPower(),
and increment the tally of powered
(PwrdZCnt) and unpowered zones
(unPwrdZCnt).

Non-RCI zones use RepairZone() to
regenerate damaged component tiles.

Flood
DoFlood(). Like Fire, it spreads to
burnable tiles, but only while
FloodCnt > 0. Otherwise, flood
tiles turn to rubble with 1/2^4
chance.

If the Power map has been
updated (NewPower flag), and
the tile is a conduit (CONDBIT),
then PWRBIT is updated with
PowerMap[] (via SetZPower()).

Power Conduit

Full Stadium
Stadiums randomly switch
between full and empty. (They
can only become full if the power
is on).

Police
St.

PoliceMap[]

1:8

Fire St.
FireStMap[]

1:8

Power Plants

Fire and Police St.

Locations and tallies are noted
for Power Scan. Nuclear reactors
randomly melt down. (Chance is
based on game level and whether
disasters are on). Coal plants
turn on their smoke animation.

NuclearPop +1
CoalPop +1

PushPowerStack()

FireStPop +1
PolicePop +1

FirePop +1

PortPop +1

Stations are marked in the police
and fire maps, with a value
modulated by fund effects, road
access, and power.

StadiumPop +1

APortPop +1

HospPop +1
ChurchPop +1

RoadTotal

RailTotal +1

+1 +5 +6+2
No/low
traffic

High
traffic

Bridge High
traffic
bridge

ResZPop +1
ComZPop +1

IndZPop +1

RoadTotal tallies note road
infrastructure upkeep cost.

Traffic
Density

TrfDensity[]

1:2

+RZPop()
+CZPop()
+IZPop()

ResPop
ComPop

IndPop

or FreePop()

Power
PowerMap[]

1-bit

!

To keep up with faster simulation speeds
(selected by the player in the Speed menu),
certain processes run less often.

Some steps always run at a fixed, lower
frequency.

! 1/5

!

!

!

!

!

! 1/48 (yearly)
! 1/48 (yearly)

! 1/4 (monthly)
! 1/48 (yearly)

During the map scan, traffic and
rate of growth are accumulated. In

this step, these maps decay back
towards zero.

SetValves()
ClearCensus()

! 1/2 (twice monthly)

!

Update RCI Valves
Clear census data
Advance CityTime

Decay Traffic
& Rate of Growth

Maps

Map Scan

ValvesFire Coverage & Disasters

Population Density

Taxes

Taxes are taken, and census data is periodically
stored for historical purposes. This historical
data is used to show the user charts, and is
also fed into the global RCI valve formulas.

TakeCensus() also updates NeedHosp and
NeedChurch, flags which indicate whether
there are too few or too many hospitals or
churches.

Power Scan
DoPowerScan()

Police Coverage & Crime

Pollution & Land Value

City simulation is broken down into 16 steps. Each
revolution advances the city time by 1. Every frame of the
game, one of these 16 steps is performed.

Map Scan updates the whole map over
the course of eight simulation frames.
Map processes and objects are
updated, and census data is tallied.

The locations of power plants, police,
and fire departments are noted for
use in power scan, and police and fire
coverage generation.

PTLScan()

CrimeScan()

PopDenScan()

Find city center and
map distance to it.

FireAnalysis()
DoDisasters()

DecROGMem()
DecTrafficMem()
SendMessages()

Simulate()

TakeCensus()
TakeCensus2()

CollectTax()
CityEvaluation()

4

3

2
1

015

14

13

12

11

10

9

8 7
6

5

cl
ea

r
ce

ns
us

ta
ke

 c
en

su
s

us
e

ce
ns

us

1 1/10FireAnalysis() 1/20

Fast
1/5

1/19

1/17
1/18

MediumSlow

1/7
1/8
1/9

1/4

1PopDenScan()
1
1/2
1/2

CrimeScan()
PTLScan()

DoPowerScan()
!

4 revolutions are
a sim month. 48
make a sim year.

The technique is inspired by the game designer Stone Librande’s one page game design documents
(Librande 2010).

If we merge the reverse diagram with an interactive approach—e.g. Bret Victor’s Nile Visualization
(Victor 2013), such diagrams could be used generatively, to describe programs, and interactively,
to allow rich introspection and manipulation of software.

Latour, Bruno (1986). “Visualization and cognition”. In: Knowledge and Society 6 (1986), pp. 1– 40.
Librande, Stone (2010). “One-Page Designs”. Game Developers Conference. 2010.
Victor, Bret (2013). “Media for Thinking the Unthinkable”. MIT Media Lab, Apr. 4, 2013.
Gingold, Chaim (2016). Play Design. Ph.D. dissertation.

-1200… …800

0… …2

200…-600-1200… …800

+

SetValves()

CityTax

Rratio

Employment

MigrationBirths

LaborBaseIntMarket

NormResPop
Res / 8

RValve CValve IValve

PjResPop PjComPop PjIndPop

ResPop

ComPop

TotalPop

GameLevel

Modulates an external
market for PjIndPop (.98,
1.1, 1.2), and shifts the
CityTax bonus/penalty
modifier.

ResCap ComCap IndCap
+++

× ×

0… …20… …2

+

1…8 for each tile sized
housing unit, and then 16,
24, 32, 40 (RZPop()).

0..3

0.. ..20

+

If no… …when

IndPop

0… 1.3

(Com+Ind)/Res (Res+Com+Ind)/3.7 Res/(Com+Ind)

Res × .02 Res × (Employ-1)

Cratio Iratio

Valves can be capped at zero by a lack
of a desired structure:

ResPop > 500Stadium

Airport

Seaport

ComPop > 100

IndPop > 70

ResCap

ComCap

IndCap

-2000…2000 -1500…1500 -1500…1500

5…

-1200… …800

Set by
user

Census
data

Temporary
variables

Time delay of one
census interval.

Global
variable

Projected
population

Global valves influence
city growth/decay per
zone type, and are shown
to the player in SimCity's
iconic RCI chart.

Ratio of
projected to
current
(projected / pop)

Ratios are scaled up, and
a bonus/penalty derived
from CityTax and
GameLevel is added.

Current
population

Residential Commercial Industrial

SendMessages()

Sketch-n-sketch
Chugh et al. (2016)

Sketch-n-sketch is an editor for live-linked code and graphics. Edit the code and the diagram
changes; edit the diagram and the code responds. It is inspired, in part, by Bret Victor’s Drawing
Dynamic Visualizations and Toby Schachman’s Apparatus. The point of departure is making a fully
featured programming language a top level goal.

Chugh, Ravi. “Prodirect Manipulation: Bidirectional Programming for the Masses.” In Proceedings of the 38th
International Conference on Software Engineering Companion, 781–784. ACM, 2016.

Chugh, Ravi, Brian Hempel, Mitchell Spradlin, and Jacob Albers. “Programmatic and Direct Manipulation, Together at
Last.” In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 341–354. ACM, 2016.

I find this to be a very cool idea with some nice flourishes—and I’m sure there is much more to
admire. In practice I find it to be quite cumbersome. You have to manually push a “Run” button to
get the diagram to respond to code changes, which often leads to syntax errors blowing up the
diagram—making the code feel fragile and not incrementally tweak-able, which is a basic asset of
direct manipulation. The graphics editor is clunky, and lacks rudimentary user interface niceties. (e.g.
I couldn’t push delete to remove a selected object.)

One of my favorite touches is that rolling over graphics elements highlights corresponding elements
in code.

Bubble Sort
Glen Chiacchieri (2016)

Glen’s project is unpublished. Contact him and he might send you a link.

A line of characters represents an array of data to be
sorted. If you touch a character, it jumps—and will
jump over its neighbor if they are in the wrong order.

Admirable qualities to note:
• Player puppet the algorithm, from the algorithm’s
points of view—where it is iterating from.
• Data is concrete.
• Representation is appealing: characters, colors,
sound, animation.

What I would push further on:
• Make data more tangible: allow me to reorder and
stretch the characters.
• Make more of the algorithm tangible. e.g. A
butterfly flying overhead that can also be moved; A
comparator function that is somehow tangible.
• Start and build up from simplest thing: two
characters to play with.
• Even simpler: play starts by manually sorting two
elements themselves (no comparator and auto-jump;
just click to jump and swap.)

An explanation of bubble sort that uses “showing and doing”, “play”, and “exploration.”
While Glen’s piece is a work in progress of a much longer explanatory essay, I want to call
attention here to a key interactive:

Carbide
Guillermo Webster and Kevin Kwok (2016)

Experimental programming environment with a variety of intriguing features. (I can’t get the
environment to load, and the site CSS is periodically failing for me).

http://alpha.trycarbide.com

• Back propagation (edit program output and input changes)
• Add probes to the variables, expressions, or subexpressions of running programs.
• Extensible widgets for a variety of data types that visualize and edit these values, e.g.
numbers, sliders, HTML, map data, colors, graphics, strings, matrices, JavaScript object, JSON,
binary data, etc…
• Supports (in theory) any language, although JavaScript is most supported right now.
• Programming notebook style cells (can’t find a visual of this though). They point out you need
fewer cells that other environments since so much visualization is handled for you.
• Rich text comments. (Pictures would be even better).
• Polished visuals and interaction design.

Eve
Kodowa (2015)

• State database. All state is in a database of records. Program fragments read and write to this
database, which also encapsulates errors. In this fashion, complex programs are build by
composing simple processes that read/write to the database. (Analogous, in some ways, to a
spreadsheet.)
• Causality tracking. Database enables system to track causality—what led to what. (This design
brings Realtalk to mind.)
• Inspect output (e.g. HTML) to see what might have created it.
• Hyperliterate programming. Code is not just embedded in prose, but a complex program
takes the form of navigable hierarchical prose (i.e. a book). Code view is dynamic: select which
parts of the program you want to see.
• Inline errors
• Inline data. Easy inline data visualization (notebook style), with some simple widgets, like bar
graphs.

http://witheve.com

Hyper-literate programming environment with a unique database/causality model. Descends
from the Light Table (2012) project.

Simulating the World (in Emoji)
Nicky Case (2016)

An authoring tool for cellular automata style simulations.
Leverages appeal, art, and abstraction of emoji.

A GUI editor scaffolds creation of
valid rules.

The world state and simulation rules
can be edited live.

La Tabla
Chaim Gingold and Luke Iannini (2017)

Many of Tabla’s activities can be seen as a kind
of programming. For example, Fredkin and
Toffoli’s billiard ball AND gate shows how
computer logic can arise from from billiard ball
physics (image from Wikipedia).

La Tabla is an experiment in making a computerized plaything that is radically embodied and open
ended. It is a magical table—put things on it and they come to life. Make music, play pong, design
and play your own pinball tables, and create animations with your body, your friends, paper,
drawings, game pieces—whatever strikes your fancy. La Tabla achieves this by combining computer
vision, projection mapping, and design principles that anticipate and encourage open ended play
and appropriation.

Bouncing balls. Cel animation.

Pinball construction and play. Music scoring.

Loopy
Nicky Case (2017)

Draw circles, lines, and type to create simple system dynamic style feedback loops. In this effort,
there are echoes of Richmond’s Stella authoring tool (1985) and Forrester’s visual system
dynamics notation.

State Machine
Terry Cavanagh and Ruari O’Sullivan (2017, unreleased)

The developers of this title are experienced independent game developers. Although they’ve
published very little about this title, it looks promising.

An electrical system with visually apparent state (wires on/off)
helps to integrate various game systems.

http://statemachinegame.com/blog/

Flow Sheets
Glen Chiacchieri (2017)

The idea behind Flow Sheets is to make visible all of the data that courses through a program,
and to afford a style of programming in which data is always visible. The resemblance to
spreadsheets is more than visual: programming is never divorced from data, even while it is
being authored.

Work in progress. This is the second major iteration of Flow Sheets. Glen created the first one in 2016.

Each table has a name, can be independently moved around the grid, and reference one
another’s data. The presentation style of tables can be changed, for example allowing html to be
shown as code or a rendered page layout. When values are modified downstream data changes
are called out via a simple highlighting animation.

References

Agalianos, Angelos, Geoff Whitty, and Richard Noss. “The Social Shaping of Logo.” Social Studies of Science 36, no. 2
(2006): 241–267.

Auerbach, David. “The Hardest Computer Game of All Time.” Slate, January 24, 2014. http://www.slate.com/articles/
technology/bitwise/2014/01/robot_odyssey_the_hardest_computer_game_of_all_time.html.

Begel, Andrew. “LogoBlocks: A Graphical Programming Language for Interacting with the World.” Electrical
Engineering and Computer Science Department, MIT, Boston, MA, 1996.

Ben-Ari, Mordechai, Roman Bednarik, Ronit Ben-Bassat Levy, Gil Ebel, Andrés Moreno, Niko Myller, and Erkki Sutinen.
“A Decade of Research and Development on Program Animation: The Jeliot Experience.” Journal of Visual
Languages & Computing 22, no. 5 (2011): 375–384.

Borning, Alan. “Graphically Defining New Building Blocks in ThingLab.” Human-Computer Interaction 2, no. 4 (1986):
269–295.

———. “The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory.” ACM
Transactions on Programming Languages and Systems (TOPLAS) 3, no. 4 (1981): 353–387.

———. “ThingLab: A Constraint-Oriented Simulation Laboratory.” XEROX: Palo Alto Research Center, 1979.
———. “ThingLab: An Object-Oriented System for Building Simulations Using Constraints.” In Proceedings of the 5th

International Joint Conference on Artificial Intelligence-Volume 1, 497–498. Morgan Kaufmann Publishers Inc.,
1977. http://dl.acm.org/citation.cfm?id=1624545.

Brennan, Karen, and Mitchel Resnick. “New Frameworks for Studying and Assessing the Development of
Computational Thinking.” In Proceedings of the 2012 Annual Meeting of the American Educational Research
Association, Vancouver, Canada, 1–25, 2012. http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf.

Brusilovsky, Peter, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko, and Philip Miller. “Mini-Languages: A
Way to Learn Programming Principles.” Education and Information Technologies 2, no. 1 (1997): 65–83.

Chalcraft, Adam, and Michael Greene. “Train Sets.” Eureka 53 (1994): 5–12.
Chambers, Craig, and David Ungar. “Customization: Optimizing Compiler Technology for SELF, a Dynamically-Typed

Object-Oriented Programming Language.” In ACM SIGPLAN Notices, 24:146–160. ACM, 1989. http://
dl.acm.org/citation.cfm?id=74831.

Chugh, Ravi. “Prodirect Manipulation: Bidirectional Programming for the Masses.” In Proceedings of the 38th
International Conference on Software Engineering Companion, 781–784. ACM, 2016. http://dl.acm.org/
citation.cfm?id=2889210.

Chugh, Ravi, Brian Hempel, Mitchell Spradlin, and Jacob Albers. “Programmatic and Direct Manipulation, Together at
Last.” In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 341–354. ACM, 2016. http://dl.acm.org/citation.cfm?id=2908103.

Cooper, Stephen, Wanda Dann, and Randy Pausch. “Alice: A 3-D Tool for Introductory Programming Concepts.” In
Journal of Computing Sciences in Colleges, 15:107–116. Consortium for Computing Sciences in Colleges,
2000. http://dl.acm.org/citation.cfm?id=364161.

Cypher, Allen, and David Canfield Smith. “KidSim: End User Programming of Simulations.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 27–34. ACM Press/Addison-Wesley Publishing
Co., 1995. http://dl.acm.org/citation.cfm?id=223908.

Drummond, Brian, and Marilyn Stelzner. “SimKit: A Model-Building Simulation Toolkit.” In AI Tools and Techniques,
edited by Mark H. Richer, 241, 1989. https://books.google.com/books?
hl=en&lr=&id=iMUfTzVuasUC&oi=fnd&pg=PA241&dq=simkit+a+model+building+simulation+toolkit
+drummond&ots=hKigENJHUh&sig=McoA2WtoTj1HJewIWgDeRuisU1c.

Du Boulay, Benedict. “Some Difficulties of Learning to Program.” Journal of Educational Computing Research 2, no. 1
(1986): 57–73.

Gilmore, David J., Karen Pheasey, Jean Underwood, and Geoffrey Underwood. “Learning Graphical Programming: An
Evaluation of KidSim™.” In Human—Computer Interaction, 145–150. Springer, 1995. http://link.springer.com/
chapter/10.1007/978-1-5041-2896-4_24.

Green, Thomas R. G., and Marian Petre. “Usability Analysis of Visual Programming Environments: A ‘cognitive
Dimensions’ Framework.” Journal of Visual Languages & Computing 7, no. 2 (1996): 131–174.

Guo, Philip J. “Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.” In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education, 579–584. ACM, 2013. http://
dl.acm.org/citation.cfm?id=2445368.

Guzdial, Mark. “Programming Environments for Novices.” Computer Science Education Research 2004 (2004): 127–
154.

Guzdial, Mark, and Elliot Soloway. “Teaching the Nintendo Generation to Program.” Communications of the ACM 45,
no. 4 (2002): 17–21.

Hoc, J.-M. Psychology of Programming. Academic Press, 2014. https://books.google.com/books?
hl=en&lr=&id=NkOjBQAAQBAJ&oi=fnd&pg=PP1&dq=Lowering+the+Barriers+to
+Programming&ots=zT0A2L4u12&sig=mz5NVhAEiyaC_rhqT2cuU179p4k.

Hollan, James D., Edwin L. Hutchins, and Louis Weitzman. “STEAMER: An Interactive Inspectable Simulation-Based
Training System.” AI Magazine 5, no. 2 (1984): 15.

Horn, Michael S., and Robert JK Jacob. “Tangible Programming in the Classroom with Tern.” In CHI’07 Extended
Abstracts on Human Factors in Computing Systems, 1965–1970. ACM, 2007. http://dl.acm.org/citation.cfm?
id=1240933.

Hutchins, Edwin, J. D. Hollan, and D. A. Norman. “Direct Manipulation Interfaces.” Human-Computer Interaction 1,
no. 4 (1985): 311–338.

Ingalls, Dan, Bert Freudenberg, Ted Kaehler Yoshiki Ohshima, and Alan Kay. “Reviving Smalltalk-78.” Accessed
January 17, 2017. http://esug.org/data/ESUG2014/IWST/Papers/iwst2014_Reviving%20Smalltalk-78.pdf.

Ingalls, Dan, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. “Back to the Future: The Story of Squeak, a
Practical Smalltalk Written in Itself.” In ACM SIGPLAN Notices, 32:318–326. ACM, 1997. http://dl.acm.org/
citation.cfm?id=263754.

Ingalls, Dan, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken Doyle. “Fabrik: A Visual Programming
Environment.” In ACM SIGPLAN Notices, 23:176–190. ACM, 1988. http://dl.acm.org/citation.cfm?id=62100.

Ingalls, Daniel HH. “Design Principles behind Smalltalk.” BYTE Magazine 6, no. 8 (1981): 286–298.
———. “The Smalltalk-76 Programming System Design and Implementation.” In Proceedings of the 5th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, 9–16. ACM, 1978. http://dl.acm.org/
citation.cfm?id=512762.

Ingalls, Daniel, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi Mikkonen. “The Lively Kernel a Self-
Supporting System on a Web Page.” In Self-Sustaining Systems, 31–50. Springer, 2008. http://
link.springer.com/chapter/10.1007/978-3-540-89275-5_2.

Jenkins, Tony. “On the Difficulty of Learning to Program.” In Proceedings of the 3rd Annual Conference of the LTSN
Centre for Information and Computer Sciences, 4:53–58. Citeseer, 2002. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.596.9994&rep=rep1&type=pdf.

Jernigan, Will, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters, Irwin Kwan,
Faezeh Bahmani, and Andrew Ko. “A Principled Evaluation for a Principled Idea Garden.” In Visual Languages
and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on, 235–243. IEEE, 2015. http://
ieeexplore.ieee.org/abstract/document/7357222/.

Kafai, Yasmin B., and Yasmin Bettina Kafai. Minds in Play: Computer Game Design as a Context for Children’s Learning.
Routledge, 1995. https://books.google.com/books?
hl=en&lr=&id=Ocyllxa8ZjkC&oi=fnd&pg=PR2&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=0xFjwNEXm7&sig=1-T48emVebB33aQv9EHCxtX3cbA.

Kahn, Ken. “Toontalk TM—an Animated Programming Environment for Children.” Journal of Visual Languages &
Computing 7, no. 2 (1996): 197–217.

Kay, Alan. “The Early History of Smalltalk.” SIGPLAN Not. 28, no. 3 (March 1993): 69–95. doi:10.1145/155360.155364.
Kelleher, Caitlin. “Motivating Programming: Using Storytelling to Make Computer Programming Attractive to Middle

School Girls.” DTIC Document, 2006. http://oai.dtic.mil/oai/oai?
verb=getRecord&metadataPrefix=html&identifier=ADA492489.

Kelleher, Caitlin, and Randy Pausch. “Lowering the Barriers to Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers.” ACM Computing Surveys (CSUR) 37, no. 2 (2005): 83–
137.

Kelleher, Caitlin, Randy Pausch, and Sara Kiesler. “Storytelling Alice Motivates Middle School Girls to Learn Computer
Programming.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1455–
1464. ACM, 2007. http://dl.acm.org/citation.cfm?id=1240844.

Ko, Andrew J., Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, et al.
“The State of the Art in End-User Software Engineering.” ACM Computing Surveys (CSUR) 43, no. 3 (2011): 21.

Ko, Andrew J., Brad A. Myers, and Htet Htet Aung. “Six Learning Barriers in End-User Programming Systems.” In
Visual Languages and Human Centric Computing, 2004 IEEE Symposium on, 199–206. IEEE, 2004. http://
ieeexplore.ieee.org/abstract/document/1372321/.

Krahn, Robert, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and Krzysztof Palacz. “Lively Wiki a Development
Environment for Creating and Sharing Active Web Content.” In Proceedings of the 5th International
Symposium on Wikis and Open Collaboration, 9. ACM, 2009. http://dl.acm.org/citation.cfm?id=1641324.

Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. “A Study of the Difficulties of Novice Programmers.” In
Acm Sigcse Bulletin, 37:14–18. ACM, 2005. http://dl.acm.org/citation.cfm?id=1067453.

Lincke, Jens, Robert Krahn, Dan Ingalls, and Robert Hirschfeld. “Lively Fabrik a Web-Based End-User Programming
Environment.” In 2009 Seventh International Conference on Creating, Connecting and Collaborating through
Computing, 11–19. IEEE, 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5350243.

———. “Lively Fabrik a Web-Based End-User Programming Environment.” In Creating, Connecting and Collaborating
through Computing, 2009. C5’09. Seventh International Conference on, 11–19. IEEE, 2009. http://
ieeexplore.ieee.org/abstract/document/5350243/.

Lincke, Jens, Robert Krahn, Dan Ingalls, Marko Roder, and Robert Hirschfeld. “The Lively PartsBin–A Cloud-Based
Repository for Collaborative Development of Active Web Content.” In System Science (HICSS), 2012 45th
Hawaii International Conference on, 693–701. IEEE, 2012. http://ieeexplore.ieee.org/abstract/document/
6148978/.

Ludolph, Frank, Y.-Y. Chow, Dan Ingalls, Scott Wallace, and Ken Doyle. “The Fabrik Programming Environment.” In
Visual Languages, 1988., IEEE Workshop on, 222–230. IEEE, 1988. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=18032.

Malan, David J., and Henry H. Leitner. “Scratch for Budding Computer Scientists.” ACM SIGCSE Bulletin 39, no. 1
(2007): 223–227.

Maloney, John, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman, and Mitchel Resnick. “Scratch: A Sneak Preview
[Education].” In Creating, Connecting and Collaborating through Computing, 2004. Proceedings. Second
International Conference on, 104–109. IEEE, 2004. http://ieeexplore.ieee.org/abstract/document/1314376/.

Maloney, John H., Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk. Programming by Choice: Urban
Youth Learning Programming with Scratch. Vol. 40. 1. ACM, 2008. http://dl.acm.org/citation.cfm?id=1352260.

Maloney, John H., and Randall B. Smith. “Directness and Liveness in the Morphic User Interface Construction
Environment.” In Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology,
21–28. ACM, 1995. http://dl.acm.org/citation.cfm?id=215636.

Maloney, John, and Walt Disney Imagineering. “An Introduction to Morphic: The Squeak User Interface Framework.”
Squeak: OpenPersonal Computing and Multimedia, 2001. http://thelackthereof.org/docs/library/unsorted/
programming/morphic.final.pdf.

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. “The Scratch Programming
Language and Environment.” ACM Transactions on Computing Education (TOCE) 10, no. 4 (2010): 16.

Mann, Yotam, Jeff Lubow, and Adrian Freed. “The Tactus: A Tangible, Rhythmic Grid Interface Using Found-Objects.”
In NIME, 86–89, 2009. http://www.academia.edu/download/43631493/nm090075.pdf.

Martin, F., G. L. Colobong, and M. Resnick. Tangible Programming with Trains, 1999.
McNerney, Timothy S. “From Turtles to Tangible Programming Bricks: Explorations in Physical Language Design.”

Personal and Ubiquitous Computing 8, no. 5 (2004): 326–337.
———. “Tangible Programming Bricks : An Approach to Making Programming Accessible to Everyone.” Thesis,

Massachusetts Institute of Technology, 2000. http://dspace.mit.edu/handle/1721.1/62094.
Meerbaum-Salant, Orni, Michal Armoni, and Mordechai Ben-Ari. “Learning Computer Science Concepts with Scratch.”

Computer Science Education 23, no. 3 (2013): 239–264.
Moloney, J., Alan Borning, and Bjorn Freeman-Benson. Constraint Technology for User-Interface Construction in

ThingLab II. Vol. 24. 10. ACM, 1989. http://dl.acm.org/citation.cfm?id=74917.
Morgado, Leonel, Maria Cruz, and Ken Kahn. “Radia Perlman—A Pioneer of Young Children Computer Programming.”

Current Developments in Technology-Assisted Education. Proceedings of M-ICTE, 2006, 1903–1908.
Moskal, Barbara, Deborah Lurie, and Stephen Cooper. “Evaluating the Effectiveness of a New Instructional Approach.”

ACM SIGCSE Bulletin 36, no. 1 (2004): 75–79.
Nardi, Bonnie A. A Small Matter of Programming: Perspectives on End User Computing. MIT press, 1993. https://

books.google.com/books?hl=en&lr=&id=0drDRT370eoC&oi=fnd&pg=PR11&dq=nardi
+spreadsheet&ots=eFnU_hPwnu&sig=rdsz4l9pZT7ClYVcAm3mMJiY56g.

Nardi, Bonnie A., and James R. Miller. “An Ethnographic Study of Distributed Problem Solving in Spreadsheet
Development.” In Proceedings of the 1990 ACM Conference on Computer-Supported Cooperative Work, 197–
208. ACM, 1990. http://dl.acm.org/citation.cfm?id=99355.

———. The Spreadsheet Interface: A Basis for End User Programming. Hewlett-Packard Laboratories, 1990. http://
www.miramontes.com/writing/spreadsheet-eup/.

———. “Twinkling Lights and Nested Loops: Distributed Problem Solving and Spreadsheet Development.”
International Journal of Man-Machine Studies 34, no. 2 (1991): 161–184.

Nickerson, Jeffrey. “Visual Programming,” 1994.
Pane, John, and Brad Myers. “Usability Issues in the Design of Novice Programming Systems,” 1996. http://

repository.cmu.edu/isr/820/?utm_source=repository.cmu.edu%2Fisr
%2F820&utm_medium=PDF&utm_campaign=PDFCoverPages.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, 1980.
Pattis, Richard E. Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley & Sons, Inc., 1981.

http://dl.acm.org/citation.cfm?id=539521.
Pears, Arnold, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens Bennedsen, Marie Devlin, and

James Paterson. “A Survey of Literature on the Teaching of Introductory Programming.” ACM SIGCSE Bulletin
39, no. 4 (2007): 204–223.

Perlman, Radia. “Using Computer Technology to Provide a Creative Learning Environment for Preschool Children (PDF
Download Available).” ResearchGate. Accessed January 31, 2017. https://www.researchgate.net/publication/
37596649_Using_Computer_Technology_to_Provide_a_Creative_Learning_Environment_for_Preschool_Childre
n.

Rajala, Teemu, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. “VILLE: A Language-Independent Program
Visualization Tool.” In Proceedings of the Seventh Baltic Sea Conference on Computing Education Research-
Volume 88, 151–159. Australian Computer Society, Inc., 2007. http://dl.acm.org/citation.cfm?id=2449340.

Repenning, Alex. “Agentsheets,” 1993.
———. “Agentsheets: A Tool for Building Domain-Oriented Visual Programming Environments.” In Proceedings of the

INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems, 142–143. ACM, 1993. http://
dl.acm.org/citation.cfm?id=169119.

Repenning, Alexander. “AgentSheets®: An Interactive Simulation Environment with End-User Programmable Agents.”
Interaction, 2000. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2039&rep=rep1&type=pdf.

Repenning, Alexander, Andri Ioannidou, and John Zola. “AgentSheets: End-User Programmable Simulations.” Journal
of Artificial Societies and Social Simulation 3, no. 3 (2000): 351–358.

Repenning, Alexander, and Tamara Sumner. “Agentsheets: A Medium for Creating Domain-Oriented Visual
Languages.” Computer 28, no. 3 (1995): 17–25.

Repenning, Alexander, David Webb, and Andri Ioannidou. “Scalable Game Design and the Development of a
Checklist for Getting Computational Thinking into Public Schools.” In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, 265–269. ACM, 2010. http://dl.acm.org/citation.cfm?
id=1734357.

Resnick, Mitchel. “StarLogo: An Environment for Decentralized Modeling and Decentralized Thinking.” In Conference
Companion on Human Factors in Computing Systems, 11–12. ACM, 1996. http://dl.acm.org/citation.cfm?
id=257095.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon
Millner, et al. “Scratch: Programming for All.” Communications of the ACM 52, no. 11 (2009): 60–67.

Resnick, Mitchel, and Brian Silverman. “Some Reflections on Designing Construction Kits for Kids.” In Proceedings of
the 2005 Conference on Interaction Design and Children, 117–122. ACM, 2005. http://dl.acm.org/citation.cfm?
id=1109556.

Richmond, Barry. “S℡LA: Software for Bringing System Dynamics to the Other 98%.” In Proceedings of the 1985
International Conference of the System Dynamics Society: 1985 International System Dynamics Conference,
706–718, 1985.

Robins, Anthony, Janet Rountree, and Nathan Rountree. “Learning and Teaching Programming: A Review and
Discussion.” Computer Science Education 13, no. 2 (2003): 137–172.

Sloman, Aaron. “Interactions between Philosophy and Artificial Intelligence: The Role of Intuition and Non-Logical
Reasoning in Intelligence.” Artificial Intelligence 2, no. 3–4 (1971): 209–225.

Smith, David Canfield. “Pygmalion: A Creative Programming Environment.” Stanford University, 1975.
Smith, David Canfield, Allen Cypher, and Jim Spohrer. “KidSim: Programming Agents without a Programming

Language.” Communications of the ACM 37, no. 7 (1994): 54–67.
Soloway, Elliot. “Learning to Program= Learning to Construct Mechanisms and Explanations.” Communications of the

ACM 29, no. 9 (1986): 850–858.
Soloway, Elliot, and James C. Spohrer. Studying the Novice Programmer. Psychology Press, 2013. https://

books.google.com/books?
hl=en&lr=&id=vFhEAgAAQBAJ&oi=fnd&pg=PP1&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=W21hSJnEA0&sig=gw8EMZQYc1bCcvqOc27j_5DMJU0.

Sorva, Juha. “Notional Machines and Introductory Programming Education.” ACM Transactions on Computing
Education (TOCE) 13, no. 2 (2013): 8.

———. Visual Program Simulation in Introductory Programming Education. Aalto University, 2012. https://
aaltodoc.aalto.fi/handle/123456789/3534.

Sorva, Juha, Ville Karavirta, and Lauri Malmi. “A Review of Generic Program Visualization Systems for Introductory
Programming Education.” ACM Transactions on Computing Education (TOCE) 13, no. 4 (2013): 15.

Sorva, Juha, Jan Lönnberg, and Lauri Malmi. “Students’ Ways of Experiencing Visual Program Simulation.” Computer
Science Education 23, no. 3 (2013): 207–238.

Sorva, Juha, and Teemu Sirkiä. “UUhistle: A Software Tool for Visual Program Simulation.” In Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, 49–54. ACM, 2010. http://dl.acm.org/
citation.cfm?id=1930471.

Stewart, Ian. “Commuters and Computers: The Intelligent Subway,” 2008.
Suzuki, Hideyuki, and Hiroshi Kato. “AlgoBlock: A Tangible Programming Language, a Tool for Collaborative

Learning.” In Proceedings of 4th European Logo Conference, 297–303, 1993. https://www.researchgate.net/
profile/Hideyuki_Suzuki5/publication/
242383829_Algoblock_a_tangible_programming_language_a_tool_for_collaborative_learning/links/
575f5c8e08ae414b8e5496e3.pdf.

Weinberg, Gerald M. The Psychology of Computer Programming: Silver Anniversary Edition. Anl Sub edition. New
York: Dorset House, 1998.

Williams, Michael D., James D. Hollan, and Albert L. Stevens. “Human Reasoning about a Simple Physical System.” In
Mental Models, edited by D. Gentner and A. Stevens, 131–154, 1983. https://books.google.com/books?
hl=en&lr=&id=G8iYAgAAQBAJ&oi=fnd&pg=PA131&dq=Human+reasoning+about+a+simple+physical
+system.+&ots=aLvRSVGyfA&sig=D0lN5oGnXtymcFXy4wFd-Yy0LN4.

Wing, Jeannette M. “Computational Thinking.” Communications of the ACM 49, no. 3 (2006): 33–35.
———. “Computational Thinking and Thinking about Computing.” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 366, no. 1881 (2008): 3717–3725.
Winslow, Leon E. “Programming Pedagogy—a Psychological Overview.” ACM Sigcse Bulletin 28, no. 3 (1996): 17–22.

Agalianos, Angelos, Geoff Whitty, and Richard Noss. “The Social Shaping of Logo.” Social Studies of Science 36, no. 2
(2006): 241–267.

Auerbach, David. “The Hardest Computer Game of All Time.” Slate, January 24, 2014. http://www.slate.com/articles/
technology/bitwise/2014/01/robot_odyssey_the_hardest_computer_game_of_all_time.html.

Begel, Andrew. “LogoBlocks: A Graphical Programming Language for Interacting with the World.” Electrical
Engineering and Computer Science Department, MIT, Boston, MA, 1996.

Ben-Ari, Mordechai, Roman Bednarik, Ronit Ben-Bassat Levy, Gil Ebel, Andrés Moreno, Niko Myller, and Erkki Sutinen.
“A Decade of Research and Development on Program Animation: The Jeliot Experience.” Journal of Visual
Languages & Computing 22, no. 5 (2011): 375–384.

Borning, Alan. “Graphically Defining New Building Blocks in ThingLab.” Human-Computer Interaction 2, no. 4 (1986):
269–295.

———. “The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory.” ACM
Transactions on Programming Languages and Systems (TOPLAS) 3, no. 4 (1981): 353–387.

———. “ThingLab: A Constraint-Oriented Simulation Laboratory.” XEROX: Palo Alto Research Center, 1979.
———. “ThingLab: An Object-Oriented System for Building Simulations Using Constraints.” In Proceedings of the 5th

International Joint Conference on Artificial Intelligence-Volume 1, 497–498. Morgan Kaufmann Publishers Inc.,
1977. http://dl.acm.org/citation.cfm?id=1624545.

Brennan, Karen, and Mitchel Resnick. “New Frameworks for Studying and Assessing the Development of
Computational Thinking.” In Proceedings of the 2012 Annual Meeting of the American Educational Research
Association, Vancouver, Canada, 1–25, 2012. http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf.

Brusilovsky, Peter, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko, and Philip Miller. “Mini-Languages: A
Way to Learn Programming Principles.” Education and Information Technologies 2, no. 1 (1997): 65–83.

Chalcraft, Adam, and Michael Greene. “Train Sets.” Eureka 53 (1994): 5–12.
Chambers, Craig, and David Ungar. “Customization: Optimizing Compiler Technology for SELF, a Dynamically-Typed

Object-Oriented Programming Language.” In ACM SIGPLAN Notices, 24:146–160. ACM, 1989. http://
dl.acm.org/citation.cfm?id=74831.

Chugh, Ravi. “Prodirect Manipulation: Bidirectional Programming for the Masses.” In Proceedings of the 38th
International Conference on Software Engineering Companion, 781–784. ACM, 2016. http://dl.acm.org/
citation.cfm?id=2889210.

Chugh, Ravi, Brian Hempel, Mitchell Spradlin, and Jacob Albers. “Programmatic and Direct Manipulation, Together at
Last.” In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 341–354. ACM, 2016. http://dl.acm.org/citation.cfm?id=2908103.

Cooper, Stephen, Wanda Dann, and Randy Pausch. “Alice: A 3-D Tool for Introductory Programming Concepts.” In
Journal of Computing Sciences in Colleges, 15:107–116. Consortium for Computing Sciences in Colleges,
2000. http://dl.acm.org/citation.cfm?id=364161.

Cypher, Allen, and David Canfield Smith. “KidSim: End User Programming of Simulations.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 27–34. ACM Press/Addison-Wesley Publishing
Co., 1995. http://dl.acm.org/citation.cfm?id=223908.

Drummond, Brian, and Marilyn Stelzner. “SimKit: A Model-Building Simulation Toolkit.” In AI Tools and Techniques,
edited by Mark H. Richer, 241, 1989. https://books.google.com/books?
hl=en&lr=&id=iMUfTzVuasUC&oi=fnd&pg=PA241&dq=simkit+a+model+building+simulation+toolkit
+drummond&ots=hKigENJHUh&sig=McoA2WtoTj1HJewIWgDeRuisU1c.

Du Boulay, Benedict. “Some Difficulties of Learning to Program.” Journal of Educational Computing Research 2, no. 1
(1986): 57–73.

Gilmore, David J., Karen Pheasey, Jean Underwood, and Geoffrey Underwood. “Learning Graphical Programming: An
Evaluation of KidSim™.” In Human—Computer Interaction, 145–150. Springer, 1995. http://link.springer.com/
chapter/10.1007/978-1-5041-2896-4_24.

Green, Thomas R. G., and Marian Petre. “Usability Analysis of Visual Programming Environments: A ‘cognitive
Dimensions’ Framework.” Journal of Visual Languages & Computing 7, no. 2 (1996): 131–174.

Guo, Philip J. “Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.” In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education, 579–584. ACM, 2013. http://
dl.acm.org/citation.cfm?id=2445368.

Guzdial, Mark. “Programming Environments for Novices.” Computer Science Education Research 2004 (2004): 127–
154.

Guzdial, Mark, and Elliot Soloway. “Teaching the Nintendo Generation to Program.” Communications of the ACM 45,
no. 4 (2002): 17–21.

Hoc, J.-M. Psychology of Programming. Academic Press, 2014. https://books.google.com/books?
hl=en&lr=&id=NkOjBQAAQBAJ&oi=fnd&pg=PP1&dq=Lowering+the+Barriers+to
+Programming&ots=zT0A2L4u12&sig=mz5NVhAEiyaC_rhqT2cuU179p4k.

Hollan, James D., Edwin L. Hutchins, and Louis Weitzman. “STEAMER: An Interactive Inspectable Simulation-Based
Training System.” AI Magazine 5, no. 2 (1984): 15.

Horn, Michael S., and Robert JK Jacob. “Tangible Programming in the Classroom with Tern.” In CHI’07 Extended
Abstracts on Human Factors in Computing Systems, 1965–1970. ACM, 2007. http://dl.acm.org/citation.cfm?
id=1240933.

Hutchins, Edwin, J. D. Hollan, and D. A. Norman. “Direct Manipulation Interfaces.” Human-Computer Interaction 1,
no. 4 (1985): 311–338.

Ingalls, Dan, Bert Freudenberg, Ted Kaehler Yoshiki Ohshima, and Alan Kay. “Reviving Smalltalk-78.” Accessed
January 17, 2017. http://esug.org/data/ESUG2014/IWST/Papers/iwst2014_Reviving%20Smalltalk-78.pdf.

Ingalls, Dan, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. “Back to the Future: The Story of Squeak, a
Practical Smalltalk Written in Itself.” In ACM SIGPLAN Notices, 32:318–326. ACM, 1997. http://dl.acm.org/
citation.cfm?id=263754.

Ingalls, Dan, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken Doyle. “Fabrik: A Visual Programming
Environment.” In ACM SIGPLAN Notices, 23:176–190. ACM, 1988. http://dl.acm.org/citation.cfm?id=62100.

Ingalls, Daniel HH. “Design Principles behind Smalltalk.” BYTE Magazine 6, no. 8 (1981): 286–298.
———. “The Smalltalk-76 Programming System Design and Implementation.” In Proceedings of the 5th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, 9–16. ACM, 1978. http://dl.acm.org/
citation.cfm?id=512762.

Ingalls, Daniel, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi Mikkonen. “The Lively Kernel a Self-
Supporting System on a Web Page.” In Self-Sustaining Systems, 31–50. Springer, 2008. http://
link.springer.com/chapter/10.1007/978-3-540-89275-5_2.

Jenkins, Tony. “On the Difficulty of Learning to Program.” In Proceedings of the 3rd Annual Conference of the LTSN
Centre for Information and Computer Sciences, 4:53–58. Citeseer, 2002. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.596.9994&rep=rep1&type=pdf.

Jernigan, Will, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters, Irwin Kwan,
Faezeh Bahmani, and Andrew Ko. “A Principled Evaluation for a Principled Idea Garden.” In Visual Languages
and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on, 235–243. IEEE, 2015. http://
ieeexplore.ieee.org/abstract/document/7357222/.

Kafai, Yasmin B., and Yasmin Bettina Kafai. Minds in Play: Computer Game Design as a Context for Children’s Learning.
Routledge, 1995. https://books.google.com/books?
hl=en&lr=&id=Ocyllxa8ZjkC&oi=fnd&pg=PR2&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=0xFjwNEXm7&sig=1-T48emVebB33aQv9EHCxtX3cbA.

Kahn, Ken. “Toontalk TM—an Animated Programming Environment for Children.” Journal of Visual Languages &
Computing 7, no. 2 (1996): 197–217.

Kay, Alan. “The Early History of Smalltalk.” SIGPLAN Not. 28, no. 3 (March 1993): 69–95. doi:10.1145/155360.155364.
Kelleher, Caitlin. “Motivating Programming: Using Storytelling to Make Computer Programming Attractive to Middle

School Girls.” DTIC Document, 2006. http://oai.dtic.mil/oai/oai?
verb=getRecord&metadataPrefix=html&identifier=ADA492489.

Kelleher, Caitlin, and Randy Pausch. “Lowering the Barriers to Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers.” ACM Computing Surveys (CSUR) 37, no. 2 (2005): 83–
137.

Kelleher, Caitlin, Randy Pausch, and Sara Kiesler. “Storytelling Alice Motivates Middle School Girls to Learn Computer
Programming.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1455–
1464. ACM, 2007. http://dl.acm.org/citation.cfm?id=1240844.

Ko, Andrew J., Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, et al.
“The State of the Art in End-User Software Engineering.” ACM Computing Surveys (CSUR) 43, no. 3 (2011): 21.

Ko, Andrew J., Brad A. Myers, and Htet Htet Aung. “Six Learning Barriers in End-User Programming Systems.” In
Visual Languages and Human Centric Computing, 2004 IEEE Symposium on, 199–206. IEEE, 2004. http://
ieeexplore.ieee.org/abstract/document/1372321/.

Krahn, Robert, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and Krzysztof Palacz. “Lively Wiki a Development
Environment for Creating and Sharing Active Web Content.” In Proceedings of the 5th International
Symposium on Wikis and Open Collaboration, 9. ACM, 2009. http://dl.acm.org/citation.cfm?id=1641324.

Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. “A Study of the Difficulties of Novice Programmers.” In
Acm Sigcse Bulletin, 37:14–18. ACM, 2005. http://dl.acm.org/citation.cfm?id=1067453.

Lincke, Jens, Robert Krahn, Dan Ingalls, and Robert Hirschfeld. “Lively Fabrik a Web-Based End-User Programming
Environment.” In 2009 Seventh International Conference on Creating, Connecting and Collaborating through
Computing, 11–19. IEEE, 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5350243.

———. “Lively Fabrik a Web-Based End-User Programming Environment.” In Creating, Connecting and Collaborating
through Computing, 2009. C5’09. Seventh International Conference on, 11–19. IEEE, 2009. http://
ieeexplore.ieee.org/abstract/document/5350243/.

Lincke, Jens, Robert Krahn, Dan Ingalls, Marko Roder, and Robert Hirschfeld. “The Lively PartsBin–A Cloud-Based
Repository for Collaborative Development of Active Web Content.” In System Science (HICSS), 2012 45th
Hawaii International Conference on, 693–701. IEEE, 2012. http://ieeexplore.ieee.org/abstract/document/
6148978/.

Ludolph, Frank, Y.-Y. Chow, Dan Ingalls, Scott Wallace, and Ken Doyle. “The Fabrik Programming Environment.” In
Visual Languages, 1988., IEEE Workshop on, 222–230. IEEE, 1988. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=18032.

Malan, David J., and Henry H. Leitner. “Scratch for Budding Computer Scientists.” ACM SIGCSE Bulletin 39, no. 1
(2007): 223–227.

Maloney, John, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman, and Mitchel Resnick. “Scratch: A Sneak Preview
[Education].” In Creating, Connecting and Collaborating through Computing, 2004. Proceedings. Second
International Conference on, 104–109. IEEE, 2004. http://ieeexplore.ieee.org/abstract/document/1314376/.

Maloney, John H., Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk. Programming by Choice: Urban
Youth Learning Programming with Scratch. Vol. 40. 1. ACM, 2008. http://dl.acm.org/citation.cfm?id=1352260.

Maloney, John H., and Randall B. Smith. “Directness and Liveness in the Morphic User Interface Construction
Environment.” In Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology,
21–28. ACM, 1995. http://dl.acm.org/citation.cfm?id=215636.

Maloney, John, and Walt Disney Imagineering. “An Introduction to Morphic: The Squeak User Interface Framework.”
Squeak: OpenPersonal Computing and Multimedia, 2001. http://thelackthereof.org/docs/library/unsorted/
programming/morphic.final.pdf.

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. “The Scratch Programming
Language and Environment.” ACM Transactions on Computing Education (TOCE) 10, no. 4 (2010): 16.

Mann, Yotam, Jeff Lubow, and Adrian Freed. “The Tactus: A Tangible, Rhythmic Grid Interface Using Found-Objects.”
In NIME, 86–89, 2009. http://www.academia.edu/download/43631493/nm090075.pdf.

Martin, F., G. L. Colobong, and M. Resnick. Tangible Programming with Trains, 1999.
McNerney, Timothy S. “From Turtles to Tangible Programming Bricks: Explorations in Physical Language Design.”

Personal and Ubiquitous Computing 8, no. 5 (2004): 326–337.
———. “Tangible Programming Bricks : An Approach to Making Programming Accessible to Everyone.” Thesis,

Massachusetts Institute of Technology, 2000. http://dspace.mit.edu/handle/1721.1/62094.
Meerbaum-Salant, Orni, Michal Armoni, and Mordechai Ben-Ari. “Learning Computer Science Concepts with Scratch.”

Computer Science Education 23, no. 3 (2013): 239–264.
Moloney, J., Alan Borning, and Bjorn Freeman-Benson. Constraint Technology for User-Interface Construction in

ThingLab II. Vol. 24. 10. ACM, 1989. http://dl.acm.org/citation.cfm?id=74917.
Morgado, Leonel, Maria Cruz, and Ken Kahn. “Radia Perlman—A Pioneer of Young Children Computer Programming.”

Current Developments in Technology-Assisted Education. Proceedings of M-ICTE, 2006, 1903–1908.
Moskal, Barbara, Deborah Lurie, and Stephen Cooper. “Evaluating the Effectiveness of a New Instructional Approach.”

ACM SIGCSE Bulletin 36, no. 1 (2004): 75–79.
Nardi, Bonnie A. A Small Matter of Programming: Perspectives on End User Computing. MIT press, 1993. https://

books.google.com/books?hl=en&lr=&id=0drDRT370eoC&oi=fnd&pg=PR11&dq=nardi
+spreadsheet&ots=eFnU_hPwnu&sig=rdsz4l9pZT7ClYVcAm3mMJiY56g.

Nardi, Bonnie A., and James R. Miller. “An Ethnographic Study of Distributed Problem Solving in Spreadsheet
Development.” In Proceedings of the 1990 ACM Conference on Computer-Supported Cooperative Work, 197–
208. ACM, 1990. http://dl.acm.org/citation.cfm?id=99355.

———. The Spreadsheet Interface: A Basis for End User Programming. Hewlett-Packard Laboratories, 1990. http://
www.miramontes.com/writing/spreadsheet-eup/.

———. “Twinkling Lights and Nested Loops: Distributed Problem Solving and Spreadsheet Development.”
International Journal of Man-Machine Studies 34, no. 2 (1991): 161–184.

Nickerson, Jeffrey. “Visual Programming,” 1994.
Pane, John, and Brad Myers. “Usability Issues in the Design of Novice Programming Systems,” 1996. http://

repository.cmu.edu/isr/820/?utm_source=repository.cmu.edu%2Fisr
%2F820&utm_medium=PDF&utm_campaign=PDFCoverPages.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, 1980.
Pattis, Richard E. Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley & Sons, Inc., 1981.

http://dl.acm.org/citation.cfm?id=539521.
Pears, Arnold, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens Bennedsen, Marie Devlin, and

James Paterson. “A Survey of Literature on the Teaching of Introductory Programming.” ACM SIGCSE Bulletin
39, no. 4 (2007): 204–223.

Perlman, Radia. “Using Computer Technology to Provide a Creative Learning Environment for Preschool Children (PDF
Download Available).” ResearchGate. Accessed January 31, 2017. https://www.researchgate.net/publication/
37596649_Using_Computer_Technology_to_Provide_a_Creative_Learning_Environment_for_Preschool_Childre
n.

Rajala, Teemu, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. “VILLE: A Language-Independent Program
Visualization Tool.” In Proceedings of the Seventh Baltic Sea Conference on Computing Education Research-
Volume 88, 151–159. Australian Computer Society, Inc., 2007. http://dl.acm.org/citation.cfm?id=2449340.

Repenning, Alex. “Agentsheets,” 1993.
———. “Agentsheets: A Tool for Building Domain-Oriented Visual Programming Environments.” In Proceedings of the

INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems, 142–143. ACM, 1993. http://
dl.acm.org/citation.cfm?id=169119.

Repenning, Alexander. “AgentSheets®: An Interactive Simulation Environment with End-User Programmable Agents.”
Interaction, 2000. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2039&rep=rep1&type=pdf.

Repenning, Alexander, Andri Ioannidou, and John Zola. “AgentSheets: End-User Programmable Simulations.” Journal
of Artificial Societies and Social Simulation 3, no. 3 (2000): 351–358.

Repenning, Alexander, and Tamara Sumner. “Agentsheets: A Medium for Creating Domain-Oriented Visual
Languages.” Computer 28, no. 3 (1995): 17–25.

Repenning, Alexander, David Webb, and Andri Ioannidou. “Scalable Game Design and the Development of a
Checklist for Getting Computational Thinking into Public Schools.” In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, 265–269. ACM, 2010. http://dl.acm.org/citation.cfm?
id=1734357.

Resnick, Mitchel. “StarLogo: An Environment for Decentralized Modeling and Decentralized Thinking.” In Conference
Companion on Human Factors in Computing Systems, 11–12. ACM, 1996. http://dl.acm.org/citation.cfm?
id=257095.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon
Millner, et al. “Scratch: Programming for All.” Communications of the ACM 52, no. 11 (2009): 60–67.

Resnick, Mitchel, and Brian Silverman. “Some Reflections on Designing Construction Kits for Kids.” In Proceedings of
the 2005 Conference on Interaction Design and Children, 117–122. ACM, 2005. http://dl.acm.org/citation.cfm?
id=1109556.

Richmond, Barry. “S℡LA: Software for Bringing System Dynamics to the Other 98%.” In Proceedings of the 1985
International Conference of the System Dynamics Society: 1985 International System Dynamics Conference,
706–718, 1985.

Robins, Anthony, Janet Rountree, and Nathan Rountree. “Learning and Teaching Programming: A Review and
Discussion.” Computer Science Education 13, no. 2 (2003): 137–172.

Sloman, Aaron. “Interactions between Philosophy and Artificial Intelligence: The Role of Intuition and Non-Logical
Reasoning in Intelligence.” Artificial Intelligence 2, no. 3–4 (1971): 209–225.

Smith, David Canfield. “Pygmalion: A Creative Programming Environment.” Stanford University, 1975.
Smith, David Canfield, Allen Cypher, and Jim Spohrer. “KidSim: Programming Agents without a Programming

Language.” Communications of the ACM 37, no. 7 (1994): 54–67.
Soloway, Elliot. “Learning to Program= Learning to Construct Mechanisms and Explanations.” Communications of the

ACM 29, no. 9 (1986): 850–858.
Soloway, Elliot, and James C. Spohrer. Studying the Novice Programmer. Psychology Press, 2013. https://

books.google.com/books?
hl=en&lr=&id=vFhEAgAAQBAJ&oi=fnd&pg=PP1&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=W21hSJnEA0&sig=gw8EMZQYc1bCcvqOc27j_5DMJU0.

Sorva, Juha. “Notional Machines and Introductory Programming Education.” ACM Transactions on Computing
Education (TOCE) 13, no. 2 (2013): 8.

———. Visual Program Simulation in Introductory Programming Education. Aalto University, 2012. https://
aaltodoc.aalto.fi/handle/123456789/3534.

Sorva, Juha, Ville Karavirta, and Lauri Malmi. “A Review of Generic Program Visualization Systems for Introductory
Programming Education.” ACM Transactions on Computing Education (TOCE) 13, no. 4 (2013): 15.

Sorva, Juha, Jan Lönnberg, and Lauri Malmi. “Students’ Ways of Experiencing Visual Program Simulation.” Computer
Science Education 23, no. 3 (2013): 207–238.

Sorva, Juha, and Teemu Sirkiä. “UUhistle: A Software Tool for Visual Program Simulation.” In Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, 49–54. ACM, 2010. http://dl.acm.org/
citation.cfm?id=1930471.

Stewart, Ian. “Commuters and Computers: The Intelligent Subway,” 2008.
Suzuki, Hideyuki, and Hiroshi Kato. “AlgoBlock: A Tangible Programming Language, a Tool for Collaborative

Learning.” In Proceedings of 4th European Logo Conference, 297–303, 1993. https://www.researchgate.net/
profile/Hideyuki_Suzuki5/publication/
242383829_Algoblock_a_tangible_programming_language_a_tool_for_collaborative_learning/links/
575f5c8e08ae414b8e5496e3.pdf.

Weinberg, Gerald M. The Psychology of Computer Programming: Silver Anniversary Edition. Anl Sub edition. New
York: Dorset House, 1998.

Williams, Michael D., James D. Hollan, and Albert L. Stevens. “Human Reasoning about a Simple Physical System.” In
Mental Models, edited by D. Gentner and A. Stevens, 131–154, 1983. https://books.google.com/books?
hl=en&lr=&id=G8iYAgAAQBAJ&oi=fnd&pg=PA131&dq=Human+reasoning+about+a+simple+physical
+system.+&ots=aLvRSVGyfA&sig=D0lN5oGnXtymcFXy4wFd-Yy0LN4.

Wing, Jeannette M. “Computational Thinking.” Communications of the ACM 49, no. 3 (2006): 33–35.
———. “Computational Thinking and Thinking about Computing.” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 366, no. 1881 (2008): 3717–3725.
Winslow, Leon E. “Programming Pedagogy—a Psychological Overview.” ACM Sigcse Bulletin 28, no. 3 (1996): 17–22.

Agalianos, Angelos, Geoff Whitty, and Richard Noss. “The Social Shaping of Logo.” Social Studies of Science 36, no. 2
(2006): 241–267.

Auerbach, David. “The Hardest Computer Game of All Time.” Slate, January 24, 2014. http://www.slate.com/articles/
technology/bitwise/2014/01/robot_odyssey_the_hardest_computer_game_of_all_time.html.

Begel, Andrew. “LogoBlocks: A Graphical Programming Language for Interacting with the World.” Electrical
Engineering and Computer Science Department, MIT, Boston, MA, 1996.

Ben-Ari, Mordechai, Roman Bednarik, Ronit Ben-Bassat Levy, Gil Ebel, Andrés Moreno, Niko Myller, and Erkki Sutinen.
“A Decade of Research and Development on Program Animation: The Jeliot Experience.” Journal of Visual
Languages & Computing 22, no. 5 (2011): 375–384.

Borning, Alan. “Graphically Defining New Building Blocks in ThingLab.” Human-Computer Interaction 2, no. 4 (1986):
269–295.

———. “The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory.” ACM
Transactions on Programming Languages and Systems (TOPLAS) 3, no. 4 (1981): 353–387.

———. “ThingLab: A Constraint-Oriented Simulation Laboratory.” XEROX: Palo Alto Research Center, 1979.
———. “ThingLab: An Object-Oriented System for Building Simulations Using Constraints.” In Proceedings of the 5th

International Joint Conference on Artificial Intelligence-Volume 1, 497–498. Morgan Kaufmann Publishers Inc.,
1977. http://dl.acm.org/citation.cfm?id=1624545.

Brennan, Karen, and Mitchel Resnick. “New Frameworks for Studying and Assessing the Development of
Computational Thinking.” In Proceedings of the 2012 Annual Meeting of the American Educational Research
Association, Vancouver, Canada, 1–25, 2012. http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf.

Brusilovsky, Peter, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko, and Philip Miller. “Mini-Languages: A
Way to Learn Programming Principles.” Education and Information Technologies 2, no. 1 (1997): 65–83.

Chalcraft, Adam, and Michael Greene. “Train Sets.” Eureka 53 (1994): 5–12.
Chambers, Craig, and David Ungar. “Customization: Optimizing Compiler Technology for SELF, a Dynamically-Typed

Object-Oriented Programming Language.” In ACM SIGPLAN Notices, 24:146–160. ACM, 1989. http://
dl.acm.org/citation.cfm?id=74831.

Chugh, Ravi. “Prodirect Manipulation: Bidirectional Programming for the Masses.” In Proceedings of the 38th
International Conference on Software Engineering Companion, 781–784. ACM, 2016. http://dl.acm.org/
citation.cfm?id=2889210.

Chugh, Ravi, Brian Hempel, Mitchell Spradlin, and Jacob Albers. “Programmatic and Direct Manipulation, Together at
Last.” In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 341–354. ACM, 2016. http://dl.acm.org/citation.cfm?id=2908103.

Cooper, Stephen, Wanda Dann, and Randy Pausch. “Alice: A 3-D Tool for Introductory Programming Concepts.” In
Journal of Computing Sciences in Colleges, 15:107–116. Consortium for Computing Sciences in Colleges,
2000. http://dl.acm.org/citation.cfm?id=364161.

Cypher, Allen, and David Canfield Smith. “KidSim: End User Programming of Simulations.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 27–34. ACM Press/Addison-Wesley Publishing
Co., 1995. http://dl.acm.org/citation.cfm?id=223908.

Drummond, Brian, and Marilyn Stelzner. “SimKit: A Model-Building Simulation Toolkit.” In AI Tools and Techniques,
edited by Mark H. Richer, 241, 1989. https://books.google.com/books?
hl=en&lr=&id=iMUfTzVuasUC&oi=fnd&pg=PA241&dq=simkit+a+model+building+simulation+toolkit
+drummond&ots=hKigENJHUh&sig=McoA2WtoTj1HJewIWgDeRuisU1c.

Du Boulay, Benedict. “Some Difficulties of Learning to Program.” Journal of Educational Computing Research 2, no. 1
(1986): 57–73.

Gilmore, David J., Karen Pheasey, Jean Underwood, and Geoffrey Underwood. “Learning Graphical Programming: An
Evaluation of KidSim™.” In Human—Computer Interaction, 145–150. Springer, 1995. http://link.springer.com/
chapter/10.1007/978-1-5041-2896-4_24.

Green, Thomas R. G., and Marian Petre. “Usability Analysis of Visual Programming Environments: A ‘cognitive
Dimensions’ Framework.” Journal of Visual Languages & Computing 7, no. 2 (1996): 131–174.

Guo, Philip J. “Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.” In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education, 579–584. ACM, 2013. http://
dl.acm.org/citation.cfm?id=2445368.

Guzdial, Mark. “Programming Environments for Novices.” Computer Science Education Research 2004 (2004): 127–
154.

Guzdial, Mark, and Elliot Soloway. “Teaching the Nintendo Generation to Program.” Communications of the ACM 45,
no. 4 (2002): 17–21.

Hoc, J.-M. Psychology of Programming. Academic Press, 2014. https://books.google.com/books?
hl=en&lr=&id=NkOjBQAAQBAJ&oi=fnd&pg=PP1&dq=Lowering+the+Barriers+to
+Programming&ots=zT0A2L4u12&sig=mz5NVhAEiyaC_rhqT2cuU179p4k.

Hollan, James D., Edwin L. Hutchins, and Louis Weitzman. “STEAMER: An Interactive Inspectable Simulation-Based
Training System.” AI Magazine 5, no. 2 (1984): 15.

Horn, Michael S., and Robert JK Jacob. “Tangible Programming in the Classroom with Tern.” In CHI’07 Extended
Abstracts on Human Factors in Computing Systems, 1965–1970. ACM, 2007. http://dl.acm.org/citation.cfm?
id=1240933.

Hutchins, Edwin, J. D. Hollan, and D. A. Norman. “Direct Manipulation Interfaces.” Human-Computer Interaction 1,
no. 4 (1985): 311–338.

Ingalls, Dan, Bert Freudenberg, Ted Kaehler Yoshiki Ohshima, and Alan Kay. “Reviving Smalltalk-78.” Accessed
January 17, 2017. http://esug.org/data/ESUG2014/IWST/Papers/iwst2014_Reviving%20Smalltalk-78.pdf.

Ingalls, Dan, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. “Back to the Future: The Story of Squeak, a
Practical Smalltalk Written in Itself.” In ACM SIGPLAN Notices, 32:318–326. ACM, 1997. http://dl.acm.org/
citation.cfm?id=263754.

Ingalls, Dan, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken Doyle. “Fabrik: A Visual Programming
Environment.” In ACM SIGPLAN Notices, 23:176–190. ACM, 1988. http://dl.acm.org/citation.cfm?id=62100.

Ingalls, Daniel HH. “Design Principles behind Smalltalk.” BYTE Magazine 6, no. 8 (1981): 286–298.
———. “The Smalltalk-76 Programming System Design and Implementation.” In Proceedings of the 5th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, 9–16. ACM, 1978. http://dl.acm.org/
citation.cfm?id=512762.

Ingalls, Daniel, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi Mikkonen. “The Lively Kernel a Self-
Supporting System on a Web Page.” In Self-Sustaining Systems, 31–50. Springer, 2008. http://
link.springer.com/chapter/10.1007/978-3-540-89275-5_2.

Jenkins, Tony. “On the Difficulty of Learning to Program.” In Proceedings of the 3rd Annual Conference of the LTSN
Centre for Information and Computer Sciences, 4:53–58. Citeseer, 2002. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.596.9994&rep=rep1&type=pdf.

Jernigan, Will, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters, Irwin Kwan,
Faezeh Bahmani, and Andrew Ko. “A Principled Evaluation for a Principled Idea Garden.” In Visual Languages
and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on, 235–243. IEEE, 2015. http://
ieeexplore.ieee.org/abstract/document/7357222/.

Kafai, Yasmin B., and Yasmin Bettina Kafai. Minds in Play: Computer Game Design as a Context for Children’s Learning.
Routledge, 1995. https://books.google.com/books?
hl=en&lr=&id=Ocyllxa8ZjkC&oi=fnd&pg=PR2&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=0xFjwNEXm7&sig=1-T48emVebB33aQv9EHCxtX3cbA.

Kahn, Ken. “Toontalk TM—an Animated Programming Environment for Children.” Journal of Visual Languages &
Computing 7, no. 2 (1996): 197–217.

Kay, Alan. “The Early History of Smalltalk.” SIGPLAN Not. 28, no. 3 (March 1993): 69–95. doi:10.1145/155360.155364.
Kelleher, Caitlin. “Motivating Programming: Using Storytelling to Make Computer Programming Attractive to Middle

School Girls.” DTIC Document, 2006. http://oai.dtic.mil/oai/oai?
verb=getRecord&metadataPrefix=html&identifier=ADA492489.

Kelleher, Caitlin, and Randy Pausch. “Lowering the Barriers to Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers.” ACM Computing Surveys (CSUR) 37, no. 2 (2005): 83–
137.

Kelleher, Caitlin, Randy Pausch, and Sara Kiesler. “Storytelling Alice Motivates Middle School Girls to Learn Computer
Programming.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1455–
1464. ACM, 2007. http://dl.acm.org/citation.cfm?id=1240844.

Ko, Andrew J., Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, et al.
“The State of the Art in End-User Software Engineering.” ACM Computing Surveys (CSUR) 43, no. 3 (2011): 21.

Ko, Andrew J., Brad A. Myers, and Htet Htet Aung. “Six Learning Barriers in End-User Programming Systems.” In
Visual Languages and Human Centric Computing, 2004 IEEE Symposium on, 199–206. IEEE, 2004. http://
ieeexplore.ieee.org/abstract/document/1372321/.

Krahn, Robert, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and Krzysztof Palacz. “Lively Wiki a Development
Environment for Creating and Sharing Active Web Content.” In Proceedings of the 5th International
Symposium on Wikis and Open Collaboration, 9. ACM, 2009. http://dl.acm.org/citation.cfm?id=1641324.

Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. “A Study of the Difficulties of Novice Programmers.” In
Acm Sigcse Bulletin, 37:14–18. ACM, 2005. http://dl.acm.org/citation.cfm?id=1067453.

Lincke, Jens, Robert Krahn, Dan Ingalls, and Robert Hirschfeld. “Lively Fabrik a Web-Based End-User Programming
Environment.” In 2009 Seventh International Conference on Creating, Connecting and Collaborating through
Computing, 11–19. IEEE, 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5350243.

———. “Lively Fabrik a Web-Based End-User Programming Environment.” In Creating, Connecting and Collaborating
through Computing, 2009. C5’09. Seventh International Conference on, 11–19. IEEE, 2009. http://
ieeexplore.ieee.org/abstract/document/5350243/.

Lincke, Jens, Robert Krahn, Dan Ingalls, Marko Roder, and Robert Hirschfeld. “The Lively PartsBin–A Cloud-Based
Repository for Collaborative Development of Active Web Content.” In System Science (HICSS), 2012 45th
Hawaii International Conference on, 693–701. IEEE, 2012. http://ieeexplore.ieee.org/abstract/document/
6148978/.

Ludolph, Frank, Y.-Y. Chow, Dan Ingalls, Scott Wallace, and Ken Doyle. “The Fabrik Programming Environment.” In
Visual Languages, 1988., IEEE Workshop on, 222–230. IEEE, 1988. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=18032.

Malan, David J., and Henry H. Leitner. “Scratch for Budding Computer Scientists.” ACM SIGCSE Bulletin 39, no. 1
(2007): 223–227.

Maloney, John, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman, and Mitchel Resnick. “Scratch: A Sneak Preview
[Education].” In Creating, Connecting and Collaborating through Computing, 2004. Proceedings. Second
International Conference on, 104–109. IEEE, 2004. http://ieeexplore.ieee.org/abstract/document/1314376/.

Maloney, John H., Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk. Programming by Choice: Urban
Youth Learning Programming with Scratch. Vol. 40. 1. ACM, 2008. http://dl.acm.org/citation.cfm?id=1352260.

Maloney, John H., and Randall B. Smith. “Directness and Liveness in the Morphic User Interface Construction
Environment.” In Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology,
21–28. ACM, 1995. http://dl.acm.org/citation.cfm?id=215636.

Maloney, John, and Walt Disney Imagineering. “An Introduction to Morphic: The Squeak User Interface Framework.”
Squeak: OpenPersonal Computing and Multimedia, 2001. http://thelackthereof.org/docs/library/unsorted/
programming/morphic.final.pdf.

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. “The Scratch Programming
Language and Environment.” ACM Transactions on Computing Education (TOCE) 10, no. 4 (2010): 16.

Mann, Yotam, Jeff Lubow, and Adrian Freed. “The Tactus: A Tangible, Rhythmic Grid Interface Using Found-Objects.”
In NIME, 86–89, 2009. http://www.academia.edu/download/43631493/nm090075.pdf.

Martin, F., G. L. Colobong, and M. Resnick. Tangible Programming with Trains, 1999.
McNerney, Timothy S. “From Turtles to Tangible Programming Bricks: Explorations in Physical Language Design.”

Personal and Ubiquitous Computing 8, no. 5 (2004): 326–337.
———. “Tangible Programming Bricks : An Approach to Making Programming Accessible to Everyone.” Thesis,

Massachusetts Institute of Technology, 2000. http://dspace.mit.edu/handle/1721.1/62094.
Meerbaum-Salant, Orni, Michal Armoni, and Mordechai Ben-Ari. “Learning Computer Science Concepts with Scratch.”

Computer Science Education 23, no. 3 (2013): 239–264.
Moloney, J., Alan Borning, and Bjorn Freeman-Benson. Constraint Technology for User-Interface Construction in

ThingLab II. Vol. 24. 10. ACM, 1989. http://dl.acm.org/citation.cfm?id=74917.
Morgado, Leonel, Maria Cruz, and Ken Kahn. “Radia Perlman—A Pioneer of Young Children Computer Programming.”

Current Developments in Technology-Assisted Education. Proceedings of M-ICTE, 2006, 1903–1908.
Moskal, Barbara, Deborah Lurie, and Stephen Cooper. “Evaluating the Effectiveness of a New Instructional Approach.”

ACM SIGCSE Bulletin 36, no. 1 (2004): 75–79.
Nardi, Bonnie A. A Small Matter of Programming: Perspectives on End User Computing. MIT press, 1993. https://

books.google.com/books?hl=en&lr=&id=0drDRT370eoC&oi=fnd&pg=PR11&dq=nardi
+spreadsheet&ots=eFnU_hPwnu&sig=rdsz4l9pZT7ClYVcAm3mMJiY56g.

Nardi, Bonnie A., and James R. Miller. “An Ethnographic Study of Distributed Problem Solving in Spreadsheet
Development.” In Proceedings of the 1990 ACM Conference on Computer-Supported Cooperative Work, 197–
208. ACM, 1990. http://dl.acm.org/citation.cfm?id=99355.

———. The Spreadsheet Interface: A Basis for End User Programming. Hewlett-Packard Laboratories, 1990. http://
www.miramontes.com/writing/spreadsheet-eup/.

———. “Twinkling Lights and Nested Loops: Distributed Problem Solving and Spreadsheet Development.”
International Journal of Man-Machine Studies 34, no. 2 (1991): 161–184.

Nickerson, Jeffrey. “Visual Programming,” 1994.
Pane, John, and Brad Myers. “Usability Issues in the Design of Novice Programming Systems,” 1996. http://

repository.cmu.edu/isr/820/?utm_source=repository.cmu.edu%2Fisr
%2F820&utm_medium=PDF&utm_campaign=PDFCoverPages.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, 1980.
Pattis, Richard E. Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley & Sons, Inc., 1981.

http://dl.acm.org/citation.cfm?id=539521.
Pears, Arnold, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens Bennedsen, Marie Devlin, and

James Paterson. “A Survey of Literature on the Teaching of Introductory Programming.” ACM SIGCSE Bulletin
39, no. 4 (2007): 204–223.

Perlman, Radia. “Using Computer Technology to Provide a Creative Learning Environment for Preschool Children (PDF
Download Available).” ResearchGate. Accessed January 31, 2017. https://www.researchgate.net/publication/
37596649_Using_Computer_Technology_to_Provide_a_Creative_Learning_Environment_for_Preschool_Childre
n.

Rajala, Teemu, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. “VILLE: A Language-Independent Program
Visualization Tool.” In Proceedings of the Seventh Baltic Sea Conference on Computing Education Research-
Volume 88, 151–159. Australian Computer Society, Inc., 2007. http://dl.acm.org/citation.cfm?id=2449340.

Repenning, Alex. “Agentsheets,” 1993.
———. “Agentsheets: A Tool for Building Domain-Oriented Visual Programming Environments.” In Proceedings of the

INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems, 142–143. ACM, 1993. http://
dl.acm.org/citation.cfm?id=169119.

Repenning, Alexander. “AgentSheets®: An Interactive Simulation Environment with End-User Programmable Agents.”
Interaction, 2000. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2039&rep=rep1&type=pdf.

Repenning, Alexander, Andri Ioannidou, and John Zola. “AgentSheets: End-User Programmable Simulations.” Journal
of Artificial Societies and Social Simulation 3, no. 3 (2000): 351–358.

Repenning, Alexander, and Tamara Sumner. “Agentsheets: A Medium for Creating Domain-Oriented Visual
Languages.” Computer 28, no. 3 (1995): 17–25.

Repenning, Alexander, David Webb, and Andri Ioannidou. “Scalable Game Design and the Development of a
Checklist for Getting Computational Thinking into Public Schools.” In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, 265–269. ACM, 2010. http://dl.acm.org/citation.cfm?
id=1734357.

Resnick, Mitchel. “StarLogo: An Environment for Decentralized Modeling and Decentralized Thinking.” In Conference
Companion on Human Factors in Computing Systems, 11–12. ACM, 1996. http://dl.acm.org/citation.cfm?
id=257095.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon
Millner, et al. “Scratch: Programming for All.” Communications of the ACM 52, no. 11 (2009): 60–67.

Resnick, Mitchel, and Brian Silverman. “Some Reflections on Designing Construction Kits for Kids.” In Proceedings of
the 2005 Conference on Interaction Design and Children, 117–122. ACM, 2005. http://dl.acm.org/citation.cfm?
id=1109556.

Richmond, Barry. “S℡LA: Software for Bringing System Dynamics to the Other 98%.” In Proceedings of the 1985
International Conference of the System Dynamics Society: 1985 International System Dynamics Conference,
706–718, 1985.

Robins, Anthony, Janet Rountree, and Nathan Rountree. “Learning and Teaching Programming: A Review and
Discussion.” Computer Science Education 13, no. 2 (2003): 137–172.

Sloman, Aaron. “Interactions between Philosophy and Artificial Intelligence: The Role of Intuition and Non-Logical
Reasoning in Intelligence.” Artificial Intelligence 2, no. 3–4 (1971): 209–225.

Smith, David Canfield. “Pygmalion: A Creative Programming Environment.” Stanford University, 1975.
Smith, David Canfield, Allen Cypher, and Jim Spohrer. “KidSim: Programming Agents without a Programming

Language.” Communications of the ACM 37, no. 7 (1994): 54–67.
Soloway, Elliot. “Learning to Program= Learning to Construct Mechanisms and Explanations.” Communications of the

ACM 29, no. 9 (1986): 850–858.
Soloway, Elliot, and James C. Spohrer. Studying the Novice Programmer. Psychology Press, 2013. https://

books.google.com/books?
hl=en&lr=&id=vFhEAgAAQBAJ&oi=fnd&pg=PP1&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=W21hSJnEA0&sig=gw8EMZQYc1bCcvqOc27j_5DMJU0.

Sorva, Juha. “Notional Machines and Introductory Programming Education.” ACM Transactions on Computing
Education (TOCE) 13, no. 2 (2013): 8.

———. Visual Program Simulation in Introductory Programming Education. Aalto University, 2012. https://
aaltodoc.aalto.fi/handle/123456789/3534.

Sorva, Juha, Ville Karavirta, and Lauri Malmi. “A Review of Generic Program Visualization Systems for Introductory
Programming Education.” ACM Transactions on Computing Education (TOCE) 13, no. 4 (2013): 15.

Sorva, Juha, Jan Lönnberg, and Lauri Malmi. “Students’ Ways of Experiencing Visual Program Simulation.” Computer
Science Education 23, no. 3 (2013): 207–238.

Sorva, Juha, and Teemu Sirkiä. “UUhistle: A Software Tool for Visual Program Simulation.” In Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, 49–54. ACM, 2010. http://dl.acm.org/
citation.cfm?id=1930471.

Stewart, Ian. “Commuters and Computers: The Intelligent Subway,” 2008.
Suzuki, Hideyuki, and Hiroshi Kato. “AlgoBlock: A Tangible Programming Language, a Tool for Collaborative

Learning.” In Proceedings of 4th European Logo Conference, 297–303, 1993. https://www.researchgate.net/
profile/Hideyuki_Suzuki5/publication/
242383829_Algoblock_a_tangible_programming_language_a_tool_for_collaborative_learning/links/
575f5c8e08ae414b8e5496e3.pdf.

Weinberg, Gerald M. The Psychology of Computer Programming: Silver Anniversary Edition. Anl Sub edition. New
York: Dorset House, 1998.

Williams, Michael D., James D. Hollan, and Albert L. Stevens. “Human Reasoning about a Simple Physical System.” In
Mental Models, edited by D. Gentner and A. Stevens, 131–154, 1983. https://books.google.com/books?
hl=en&lr=&id=G8iYAgAAQBAJ&oi=fnd&pg=PA131&dq=Human+reasoning+about+a+simple+physical
+system.+&ots=aLvRSVGyfA&sig=D0lN5oGnXtymcFXy4wFd-Yy0LN4.

Wing, Jeannette M. “Computational Thinking.” Communications of the ACM 49, no. 3 (2006): 33–35.
———. “Computational Thinking and Thinking about Computing.” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 366, no. 1881 (2008): 3717–3725.
Winslow, Leon E. “Programming Pedagogy—a Psychological Overview.” ACM Sigcse Bulletin 28, no. 3 (1996): 17–22.

Agalianos, Angelos, Geoff Whitty, and Richard Noss. “The Social Shaping of Logo.” Social Studies of Science 36, no. 2
(2006): 241–267.

Auerbach, David. “The Hardest Computer Game of All Time.” Slate, January 24, 2014. http://www.slate.com/articles/
technology/bitwise/2014/01/robot_odyssey_the_hardest_computer_game_of_all_time.html.

Begel, Andrew. “LogoBlocks: A Graphical Programming Language for Interacting with the World.” Electrical
Engineering and Computer Science Department, MIT, Boston, MA, 1996.

Ben-Ari, Mordechai, Roman Bednarik, Ronit Ben-Bassat Levy, Gil Ebel, Andrés Moreno, Niko Myller, and Erkki Sutinen.
“A Decade of Research and Development on Program Animation: The Jeliot Experience.” Journal of Visual
Languages & Computing 22, no. 5 (2011): 375–384.

Borning, Alan. “Graphically Defining New Building Blocks in ThingLab.” Human-Computer Interaction 2, no. 4 (1986):
269–295.

———. “The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory.” ACM
Transactions on Programming Languages and Systems (TOPLAS) 3, no. 4 (1981): 353–387.

———. “ThingLab: A Constraint-Oriented Simulation Laboratory.” XEROX: Palo Alto Research Center, 1979.
———. “ThingLab: An Object-Oriented System for Building Simulations Using Constraints.” In Proceedings of the 5th

International Joint Conference on Artificial Intelligence-Volume 1, 497–498. Morgan Kaufmann Publishers Inc.,
1977. http://dl.acm.org/citation.cfm?id=1624545.

Brennan, Karen, and Mitchel Resnick. “New Frameworks for Studying and Assessing the Development of
Computational Thinking.” In Proceedings of the 2012 Annual Meeting of the American Educational Research
Association, Vancouver, Canada, 1–25, 2012. http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf.

Brusilovsky, Peter, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko, and Philip Miller. “Mini-Languages: A
Way to Learn Programming Principles.” Education and Information Technologies 2, no. 1 (1997): 65–83.

Chalcraft, Adam, and Michael Greene. “Train Sets.” Eureka 53 (1994): 5–12.
Chambers, Craig, and David Ungar. “Customization: Optimizing Compiler Technology for SELF, a Dynamically-Typed

Object-Oriented Programming Language.” In ACM SIGPLAN Notices, 24:146–160. ACM, 1989. http://
dl.acm.org/citation.cfm?id=74831.

Chugh, Ravi. “Prodirect Manipulation: Bidirectional Programming for the Masses.” In Proceedings of the 38th
International Conference on Software Engineering Companion, 781–784. ACM, 2016. http://dl.acm.org/
citation.cfm?id=2889210.

Chugh, Ravi, Brian Hempel, Mitchell Spradlin, and Jacob Albers. “Programmatic and Direct Manipulation, Together at
Last.” In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 341–354. ACM, 2016. http://dl.acm.org/citation.cfm?id=2908103.

Cooper, Stephen, Wanda Dann, and Randy Pausch. “Alice: A 3-D Tool for Introductory Programming Concepts.” In
Journal of Computing Sciences in Colleges, 15:107–116. Consortium for Computing Sciences in Colleges,
2000. http://dl.acm.org/citation.cfm?id=364161.

Cypher, Allen, and David Canfield Smith. “KidSim: End User Programming of Simulations.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 27–34. ACM Press/Addison-Wesley Publishing
Co., 1995. http://dl.acm.org/citation.cfm?id=223908.

Drummond, Brian, and Marilyn Stelzner. “SimKit: A Model-Building Simulation Toolkit.” In AI Tools and Techniques,
edited by Mark H. Richer, 241, 1989. https://books.google.com/books?
hl=en&lr=&id=iMUfTzVuasUC&oi=fnd&pg=PA241&dq=simkit+a+model+building+simulation+toolkit
+drummond&ots=hKigENJHUh&sig=McoA2WtoTj1HJewIWgDeRuisU1c.

Du Boulay, Benedict. “Some Difficulties of Learning to Program.” Journal of Educational Computing Research 2, no. 1
(1986): 57–73.

Gilmore, David J., Karen Pheasey, Jean Underwood, and Geoffrey Underwood. “Learning Graphical Programming: An
Evaluation of KidSim™.” In Human—Computer Interaction, 145–150. Springer, 1995. http://link.springer.com/
chapter/10.1007/978-1-5041-2896-4_24.

Green, Thomas R. G., and Marian Petre. “Usability Analysis of Visual Programming Environments: A ‘cognitive
Dimensions’ Framework.” Journal of Visual Languages & Computing 7, no. 2 (1996): 131–174.

Guo, Philip J. “Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.” In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education, 579–584. ACM, 2013. http://
dl.acm.org/citation.cfm?id=2445368.

Guzdial, Mark. “Programming Environments for Novices.” Computer Science Education Research 2004 (2004): 127–
154.

Guzdial, Mark, and Elliot Soloway. “Teaching the Nintendo Generation to Program.” Communications of the ACM 45,
no. 4 (2002): 17–21.

Hoc, J.-M. Psychology of Programming. Academic Press, 2014. https://books.google.com/books?
hl=en&lr=&id=NkOjBQAAQBAJ&oi=fnd&pg=PP1&dq=Lowering+the+Barriers+to
+Programming&ots=zT0A2L4u12&sig=mz5NVhAEiyaC_rhqT2cuU179p4k.

Hollan, James D., Edwin L. Hutchins, and Louis Weitzman. “STEAMER: An Interactive Inspectable Simulation-Based
Training System.” AI Magazine 5, no. 2 (1984): 15.

Horn, Michael S., and Robert JK Jacob. “Tangible Programming in the Classroom with Tern.” In CHI’07 Extended
Abstracts on Human Factors in Computing Systems, 1965–1970. ACM, 2007. http://dl.acm.org/citation.cfm?
id=1240933.

Hutchins, Edwin, J. D. Hollan, and D. A. Norman. “Direct Manipulation Interfaces.” Human-Computer Interaction 1,
no. 4 (1985): 311–338.

Ingalls, Dan, Bert Freudenberg, Ted Kaehler Yoshiki Ohshima, and Alan Kay. “Reviving Smalltalk-78.” Accessed
January 17, 2017. http://esug.org/data/ESUG2014/IWST/Papers/iwst2014_Reviving%20Smalltalk-78.pdf.

Ingalls, Dan, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. “Back to the Future: The Story of Squeak, a
Practical Smalltalk Written in Itself.” In ACM SIGPLAN Notices, 32:318–326. ACM, 1997. http://dl.acm.org/
citation.cfm?id=263754.

Ingalls, Dan, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken Doyle. “Fabrik: A Visual Programming
Environment.” In ACM SIGPLAN Notices, 23:176–190. ACM, 1988. http://dl.acm.org/citation.cfm?id=62100.

Ingalls, Daniel HH. “Design Principles behind Smalltalk.” BYTE Magazine 6, no. 8 (1981): 286–298.
———. “The Smalltalk-76 Programming System Design and Implementation.” In Proceedings of the 5th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, 9–16. ACM, 1978. http://dl.acm.org/
citation.cfm?id=512762.

Ingalls, Daniel, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi Mikkonen. “The Lively Kernel a Self-
Supporting System on a Web Page.” In Self-Sustaining Systems, 31–50. Springer, 2008. http://
link.springer.com/chapter/10.1007/978-3-540-89275-5_2.

Jenkins, Tony. “On the Difficulty of Learning to Program.” In Proceedings of the 3rd Annual Conference of the LTSN
Centre for Information and Computer Sciences, 4:53–58. Citeseer, 2002. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.596.9994&rep=rep1&type=pdf.

Jernigan, Will, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters, Irwin Kwan,
Faezeh Bahmani, and Andrew Ko. “A Principled Evaluation for a Principled Idea Garden.” In Visual Languages
and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on, 235–243. IEEE, 2015. http://
ieeexplore.ieee.org/abstract/document/7357222/.

Kafai, Yasmin B., and Yasmin Bettina Kafai. Minds in Play: Computer Game Design as a Context for Children’s Learning.
Routledge, 1995. https://books.google.com/books?
hl=en&lr=&id=Ocyllxa8ZjkC&oi=fnd&pg=PR2&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=0xFjwNEXm7&sig=1-T48emVebB33aQv9EHCxtX3cbA.

Kahn, Ken. “Toontalk TM—an Animated Programming Environment for Children.” Journal of Visual Languages &
Computing 7, no. 2 (1996): 197–217.

Kay, Alan. “The Early History of Smalltalk.” SIGPLAN Not. 28, no. 3 (March 1993): 69–95. doi:10.1145/155360.155364.
Kelleher, Caitlin. “Motivating Programming: Using Storytelling to Make Computer Programming Attractive to Middle

School Girls.” DTIC Document, 2006. http://oai.dtic.mil/oai/oai?
verb=getRecord&metadataPrefix=html&identifier=ADA492489.

Kelleher, Caitlin, and Randy Pausch. “Lowering the Barriers to Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers.” ACM Computing Surveys (CSUR) 37, no. 2 (2005): 83–
137.

Kelleher, Caitlin, Randy Pausch, and Sara Kiesler. “Storytelling Alice Motivates Middle School Girls to Learn Computer
Programming.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1455–
1464. ACM, 2007. http://dl.acm.org/citation.cfm?id=1240844.

Ko, Andrew J., Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, et al.
“The State of the Art in End-User Software Engineering.” ACM Computing Surveys (CSUR) 43, no. 3 (2011): 21.

Ko, Andrew J., Brad A. Myers, and Htet Htet Aung. “Six Learning Barriers in End-User Programming Systems.” In
Visual Languages and Human Centric Computing, 2004 IEEE Symposium on, 199–206. IEEE, 2004. http://
ieeexplore.ieee.org/abstract/document/1372321/.

Krahn, Robert, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and Krzysztof Palacz. “Lively Wiki a Development
Environment for Creating and Sharing Active Web Content.” In Proceedings of the 5th International
Symposium on Wikis and Open Collaboration, 9. ACM, 2009. http://dl.acm.org/citation.cfm?id=1641324.

Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. “A Study of the Difficulties of Novice Programmers.” In
Acm Sigcse Bulletin, 37:14–18. ACM, 2005. http://dl.acm.org/citation.cfm?id=1067453.

Lincke, Jens, Robert Krahn, Dan Ingalls, and Robert Hirschfeld. “Lively Fabrik a Web-Based End-User Programming
Environment.” In 2009 Seventh International Conference on Creating, Connecting and Collaborating through
Computing, 11–19. IEEE, 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5350243.

———. “Lively Fabrik a Web-Based End-User Programming Environment.” In Creating, Connecting and Collaborating
through Computing, 2009. C5’09. Seventh International Conference on, 11–19. IEEE, 2009. http://
ieeexplore.ieee.org/abstract/document/5350243/.

Lincke, Jens, Robert Krahn, Dan Ingalls, Marko Roder, and Robert Hirschfeld. “The Lively PartsBin–A Cloud-Based
Repository for Collaborative Development of Active Web Content.” In System Science (HICSS), 2012 45th
Hawaii International Conference on, 693–701. IEEE, 2012. http://ieeexplore.ieee.org/abstract/document/
6148978/.

Ludolph, Frank, Y.-Y. Chow, Dan Ingalls, Scott Wallace, and Ken Doyle. “The Fabrik Programming Environment.” In
Visual Languages, 1988., IEEE Workshop on, 222–230. IEEE, 1988. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=18032.

Malan, David J., and Henry H. Leitner. “Scratch for Budding Computer Scientists.” ACM SIGCSE Bulletin 39, no. 1
(2007): 223–227.

Maloney, John, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman, and Mitchel Resnick. “Scratch: A Sneak Preview
[Education].” In Creating, Connecting and Collaborating through Computing, 2004. Proceedings. Second
International Conference on, 104–109. IEEE, 2004. http://ieeexplore.ieee.org/abstract/document/1314376/.

Maloney, John H., Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk. Programming by Choice: Urban
Youth Learning Programming with Scratch. Vol. 40. 1. ACM, 2008. http://dl.acm.org/citation.cfm?id=1352260.

Maloney, John H., and Randall B. Smith. “Directness and Liveness in the Morphic User Interface Construction
Environment.” In Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology,
21–28. ACM, 1995. http://dl.acm.org/citation.cfm?id=215636.

Maloney, John, and Walt Disney Imagineering. “An Introduction to Morphic: The Squeak User Interface Framework.”
Squeak: OpenPersonal Computing and Multimedia, 2001. http://thelackthereof.org/docs/library/unsorted/
programming/morphic.final.pdf.

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. “The Scratch Programming
Language and Environment.” ACM Transactions on Computing Education (TOCE) 10, no. 4 (2010): 16.

Mann, Yotam, Jeff Lubow, and Adrian Freed. “The Tactus: A Tangible, Rhythmic Grid Interface Using Found-Objects.”
In NIME, 86–89, 2009. http://www.academia.edu/download/43631493/nm090075.pdf.

Martin, F., G. L. Colobong, and M. Resnick. Tangible Programming with Trains, 1999.
McNerney, Timothy S. “From Turtles to Tangible Programming Bricks: Explorations in Physical Language Design.”

Personal and Ubiquitous Computing 8, no. 5 (2004): 326–337.
———. “Tangible Programming Bricks : An Approach to Making Programming Accessible to Everyone.” Thesis,

Massachusetts Institute of Technology, 2000. http://dspace.mit.edu/handle/1721.1/62094.
Meerbaum-Salant, Orni, Michal Armoni, and Mordechai Ben-Ari. “Learning Computer Science Concepts with Scratch.”

Computer Science Education 23, no. 3 (2013): 239–264.
Moloney, J., Alan Borning, and Bjorn Freeman-Benson. Constraint Technology for User-Interface Construction in

ThingLab II. Vol. 24. 10. ACM, 1989. http://dl.acm.org/citation.cfm?id=74917.
Morgado, Leonel, Maria Cruz, and Ken Kahn. “Radia Perlman—A Pioneer of Young Children Computer Programming.”

Current Developments in Technology-Assisted Education. Proceedings of M-ICTE, 2006, 1903–1908.
Moskal, Barbara, Deborah Lurie, and Stephen Cooper. “Evaluating the Effectiveness of a New Instructional Approach.”

ACM SIGCSE Bulletin 36, no. 1 (2004): 75–79.
Nardi, Bonnie A. A Small Matter of Programming: Perspectives on End User Computing. MIT press, 1993. https://

books.google.com/books?hl=en&lr=&id=0drDRT370eoC&oi=fnd&pg=PR11&dq=nardi
+spreadsheet&ots=eFnU_hPwnu&sig=rdsz4l9pZT7ClYVcAm3mMJiY56g.

Nardi, Bonnie A., and James R. Miller. “An Ethnographic Study of Distributed Problem Solving in Spreadsheet
Development.” In Proceedings of the 1990 ACM Conference on Computer-Supported Cooperative Work, 197–
208. ACM, 1990. http://dl.acm.org/citation.cfm?id=99355.

———. The Spreadsheet Interface: A Basis for End User Programming. Hewlett-Packard Laboratories, 1990. http://
www.miramontes.com/writing/spreadsheet-eup/.

———. “Twinkling Lights and Nested Loops: Distributed Problem Solving and Spreadsheet Development.”
International Journal of Man-Machine Studies 34, no. 2 (1991): 161–184.

Nickerson, Jeffrey. “Visual Programming,” 1994.
Pane, John, and Brad Myers. “Usability Issues in the Design of Novice Programming Systems,” 1996. http://

repository.cmu.edu/isr/820/?utm_source=repository.cmu.edu%2Fisr
%2F820&utm_medium=PDF&utm_campaign=PDFCoverPages.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, 1980.
Pattis, Richard E. Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley & Sons, Inc., 1981.

http://dl.acm.org/citation.cfm?id=539521.
Pears, Arnold, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens Bennedsen, Marie Devlin, and

James Paterson. “A Survey of Literature on the Teaching of Introductory Programming.” ACM SIGCSE Bulletin
39, no. 4 (2007): 204–223.

Perlman, Radia. “Using Computer Technology to Provide a Creative Learning Environment for Preschool Children (PDF
Download Available).” ResearchGate. Accessed January 31, 2017. https://www.researchgate.net/publication/
37596649_Using_Computer_Technology_to_Provide_a_Creative_Learning_Environment_for_Preschool_Childre
n.

Rajala, Teemu, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. “VILLE: A Language-Independent Program
Visualization Tool.” In Proceedings of the Seventh Baltic Sea Conference on Computing Education Research-
Volume 88, 151–159. Australian Computer Society, Inc., 2007. http://dl.acm.org/citation.cfm?id=2449340.

Repenning, Alex. “Agentsheets,” 1993.
———. “Agentsheets: A Tool for Building Domain-Oriented Visual Programming Environments.” In Proceedings of the

INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems, 142–143. ACM, 1993. http://
dl.acm.org/citation.cfm?id=169119.

Repenning, Alexander. “AgentSheets®: An Interactive Simulation Environment with End-User Programmable Agents.”
Interaction, 2000. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2039&rep=rep1&type=pdf.

Repenning, Alexander, Andri Ioannidou, and John Zola. “AgentSheets: End-User Programmable Simulations.” Journal
of Artificial Societies and Social Simulation 3, no. 3 (2000): 351–358.

Repenning, Alexander, and Tamara Sumner. “Agentsheets: A Medium for Creating Domain-Oriented Visual
Languages.” Computer 28, no. 3 (1995): 17–25.

Repenning, Alexander, David Webb, and Andri Ioannidou. “Scalable Game Design and the Development of a
Checklist for Getting Computational Thinking into Public Schools.” In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, 265–269. ACM, 2010. http://dl.acm.org/citation.cfm?
id=1734357.

Resnick, Mitchel. “StarLogo: An Environment for Decentralized Modeling and Decentralized Thinking.” In Conference
Companion on Human Factors in Computing Systems, 11–12. ACM, 1996. http://dl.acm.org/citation.cfm?
id=257095.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon
Millner, et al. “Scratch: Programming for All.” Communications of the ACM 52, no. 11 (2009): 60–67.

Resnick, Mitchel, and Brian Silverman. “Some Reflections on Designing Construction Kits for Kids.” In Proceedings of
the 2005 Conference on Interaction Design and Children, 117–122. ACM, 2005. http://dl.acm.org/citation.cfm?
id=1109556.

Richmond, Barry. “S℡LA: Software for Bringing System Dynamics to the Other 98%.” In Proceedings of the 1985
International Conference of the System Dynamics Society: 1985 International System Dynamics Conference,
706–718, 1985.

Robins, Anthony, Janet Rountree, and Nathan Rountree. “Learning and Teaching Programming: A Review and
Discussion.” Computer Science Education 13, no. 2 (2003): 137–172.

Sloman, Aaron. “Interactions between Philosophy and Artificial Intelligence: The Role of Intuition and Non-Logical
Reasoning in Intelligence.” Artificial Intelligence 2, no. 3–4 (1971): 209–225.

Smith, David Canfield. “Pygmalion: A Creative Programming Environment.” Stanford University, 1975.
Smith, David Canfield, Allen Cypher, and Jim Spohrer. “KidSim: Programming Agents without a Programming

Language.” Communications of the ACM 37, no. 7 (1994): 54–67.
Soloway, Elliot. “Learning to Program= Learning to Construct Mechanisms and Explanations.” Communications of the

ACM 29, no. 9 (1986): 850–858.
Soloway, Elliot, and James C. Spohrer. Studying the Novice Programmer. Psychology Press, 2013. https://

books.google.com/books?
hl=en&lr=&id=vFhEAgAAQBAJ&oi=fnd&pg=PP1&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=W21hSJnEA0&sig=gw8EMZQYc1bCcvqOc27j_5DMJU0.

Sorva, Juha. “Notional Machines and Introductory Programming Education.” ACM Transactions on Computing
Education (TOCE) 13, no. 2 (2013): 8.

———. Visual Program Simulation in Introductory Programming Education. Aalto University, 2012. https://
aaltodoc.aalto.fi/handle/123456789/3534.

Sorva, Juha, Ville Karavirta, and Lauri Malmi. “A Review of Generic Program Visualization Systems for Introductory
Programming Education.” ACM Transactions on Computing Education (TOCE) 13, no. 4 (2013): 15.

Sorva, Juha, Jan Lönnberg, and Lauri Malmi. “Students’ Ways of Experiencing Visual Program Simulation.” Computer
Science Education 23, no. 3 (2013): 207–238.

Sorva, Juha, and Teemu Sirkiä. “UUhistle: A Software Tool for Visual Program Simulation.” In Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, 49–54. ACM, 2010. http://dl.acm.org/
citation.cfm?id=1930471.

Stewart, Ian. “Commuters and Computers: The Intelligent Subway,” 2008.
Suzuki, Hideyuki, and Hiroshi Kato. “AlgoBlock: A Tangible Programming Language, a Tool for Collaborative

Learning.” In Proceedings of 4th European Logo Conference, 297–303, 1993. https://www.researchgate.net/
profile/Hideyuki_Suzuki5/publication/
242383829_Algoblock_a_tangible_programming_language_a_tool_for_collaborative_learning/links/
575f5c8e08ae414b8e5496e3.pdf.

Weinberg, Gerald M. The Psychology of Computer Programming: Silver Anniversary Edition. Anl Sub edition. New
York: Dorset House, 1998.

Williams, Michael D., James D. Hollan, and Albert L. Stevens. “Human Reasoning about a Simple Physical System.” In
Mental Models, edited by D. Gentner and A. Stevens, 131–154, 1983. https://books.google.com/books?
hl=en&lr=&id=G8iYAgAAQBAJ&oi=fnd&pg=PA131&dq=Human+reasoning+about+a+simple+physical
+system.+&ots=aLvRSVGyfA&sig=D0lN5oGnXtymcFXy4wFd-Yy0LN4.

Wing, Jeannette M. “Computational Thinking.” Communications of the ACM 49, no. 3 (2006): 33–35.
———. “Computational Thinking and Thinking about Computing.” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 366, no. 1881 (2008): 3717–3725.
Winslow, Leon E. “Programming Pedagogy—a Psychological Overview.” ACM Sigcse Bulletin 28, no. 3 (1996): 17–22.

Agalianos, Angelos, Geoff Whitty, and Richard Noss. “The Social Shaping of Logo.” Social Studies of Science 36, no. 2
(2006): 241–267.

Auerbach, David. “The Hardest Computer Game of All Time.” Slate, January 24, 2014. http://www.slate.com/articles/
technology/bitwise/2014/01/robot_odyssey_the_hardest_computer_game_of_all_time.html.

Begel, Andrew. “LogoBlocks: A Graphical Programming Language for Interacting with the World.” Electrical
Engineering and Computer Science Department, MIT, Boston, MA, 1996.

Ben-Ari, Mordechai, Roman Bednarik, Ronit Ben-Bassat Levy, Gil Ebel, Andrés Moreno, Niko Myller, and Erkki Sutinen.
“A Decade of Research and Development on Program Animation: The Jeliot Experience.” Journal of Visual
Languages & Computing 22, no. 5 (2011): 375–384.

Borning, Alan. “Graphically Defining New Building Blocks in ThingLab.” Human-Computer Interaction 2, no. 4 (1986):
269–295.

———. “The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory.” ACM
Transactions on Programming Languages and Systems (TOPLAS) 3, no. 4 (1981): 353–387.

———. “ThingLab: A Constraint-Oriented Simulation Laboratory.” XEROX: Palo Alto Research Center, 1979.
———. “ThingLab: An Object-Oriented System for Building Simulations Using Constraints.” In Proceedings of the 5th

International Joint Conference on Artificial Intelligence-Volume 1, 497–498. Morgan Kaufmann Publishers Inc.,
1977. http://dl.acm.org/citation.cfm?id=1624545.

Brennan, Karen, and Mitchel Resnick. “New Frameworks for Studying and Assessing the Development of
Computational Thinking.” In Proceedings of the 2012 Annual Meeting of the American Educational Research
Association, Vancouver, Canada, 1–25, 2012. http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf.

Brusilovsky, Peter, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko, and Philip Miller. “Mini-Languages: A
Way to Learn Programming Principles.” Education and Information Technologies 2, no. 1 (1997): 65–83.

Chalcraft, Adam, and Michael Greene. “Train Sets.” Eureka 53 (1994): 5–12.
Chambers, Craig, and David Ungar. “Customization: Optimizing Compiler Technology for SELF, a Dynamically-Typed

Object-Oriented Programming Language.” In ACM SIGPLAN Notices, 24:146–160. ACM, 1989. http://
dl.acm.org/citation.cfm?id=74831.

Chugh, Ravi. “Prodirect Manipulation: Bidirectional Programming for the Masses.” In Proceedings of the 38th
International Conference on Software Engineering Companion, 781–784. ACM, 2016. http://dl.acm.org/
citation.cfm?id=2889210.

Chugh, Ravi, Brian Hempel, Mitchell Spradlin, and Jacob Albers. “Programmatic and Direct Manipulation, Together at
Last.” In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 341–354. ACM, 2016. http://dl.acm.org/citation.cfm?id=2908103.

Cooper, Stephen, Wanda Dann, and Randy Pausch. “Alice: A 3-D Tool for Introductory Programming Concepts.” In
Journal of Computing Sciences in Colleges, 15:107–116. Consortium for Computing Sciences in Colleges,
2000. http://dl.acm.org/citation.cfm?id=364161.

Cypher, Allen, and David Canfield Smith. “KidSim: End User Programming of Simulations.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 27–34. ACM Press/Addison-Wesley Publishing
Co., 1995. http://dl.acm.org/citation.cfm?id=223908.

Drummond, Brian, and Marilyn Stelzner. “SimKit: A Model-Building Simulation Toolkit.” In AI Tools and Techniques,
edited by Mark H. Richer, 241, 1989. https://books.google.com/books?
hl=en&lr=&id=iMUfTzVuasUC&oi=fnd&pg=PA241&dq=simkit+a+model+building+simulation+toolkit
+drummond&ots=hKigENJHUh&sig=McoA2WtoTj1HJewIWgDeRuisU1c.

Du Boulay, Benedict. “Some Difficulties of Learning to Program.” Journal of Educational Computing Research 2, no. 1
(1986): 57–73.

Gilmore, David J., Karen Pheasey, Jean Underwood, and Geoffrey Underwood. “Learning Graphical Programming: An
Evaluation of KidSim™.” In Human—Computer Interaction, 145–150. Springer, 1995. http://link.springer.com/
chapter/10.1007/978-1-5041-2896-4_24.

Green, Thomas R. G., and Marian Petre. “Usability Analysis of Visual Programming Environments: A ‘cognitive
Dimensions’ Framework.” Journal of Visual Languages & Computing 7, no. 2 (1996): 131–174.

Guo, Philip J. “Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.” In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education, 579–584. ACM, 2013. http://
dl.acm.org/citation.cfm?id=2445368.

Guzdial, Mark. “Programming Environments for Novices.” Computer Science Education Research 2004 (2004): 127–
154.

Guzdial, Mark, and Elliot Soloway. “Teaching the Nintendo Generation to Program.” Communications of the ACM 45,
no. 4 (2002): 17–21.

Hoc, J.-M. Psychology of Programming. Academic Press, 2014. https://books.google.com/books?
hl=en&lr=&id=NkOjBQAAQBAJ&oi=fnd&pg=PP1&dq=Lowering+the+Barriers+to
+Programming&ots=zT0A2L4u12&sig=mz5NVhAEiyaC_rhqT2cuU179p4k.

Hollan, James D., Edwin L. Hutchins, and Louis Weitzman. “STEAMER: An Interactive Inspectable Simulation-Based
Training System.” AI Magazine 5, no. 2 (1984): 15.

Horn, Michael S., and Robert JK Jacob. “Tangible Programming in the Classroom with Tern.” In CHI’07 Extended
Abstracts on Human Factors in Computing Systems, 1965–1970. ACM, 2007. http://dl.acm.org/citation.cfm?
id=1240933.

Hutchins, Edwin, J. D. Hollan, and D. A. Norman. “Direct Manipulation Interfaces.” Human-Computer Interaction 1,
no. 4 (1985): 311–338.

Ingalls, Dan, Bert Freudenberg, Ted Kaehler Yoshiki Ohshima, and Alan Kay. “Reviving Smalltalk-78.” Accessed
January 17, 2017. http://esug.org/data/ESUG2014/IWST/Papers/iwst2014_Reviving%20Smalltalk-78.pdf.

Ingalls, Dan, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. “Back to the Future: The Story of Squeak, a
Practical Smalltalk Written in Itself.” In ACM SIGPLAN Notices, 32:318–326. ACM, 1997. http://dl.acm.org/
citation.cfm?id=263754.

Ingalls, Dan, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken Doyle. “Fabrik: A Visual Programming
Environment.” In ACM SIGPLAN Notices, 23:176–190. ACM, 1988. http://dl.acm.org/citation.cfm?id=62100.

Ingalls, Daniel HH. “Design Principles behind Smalltalk.” BYTE Magazine 6, no. 8 (1981): 286–298.
———. “The Smalltalk-76 Programming System Design and Implementation.” In Proceedings of the 5th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, 9–16. ACM, 1978. http://dl.acm.org/
citation.cfm?id=512762.

Ingalls, Daniel, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi Mikkonen. “The Lively Kernel a Self-
Supporting System on a Web Page.” In Self-Sustaining Systems, 31–50. Springer, 2008. http://
link.springer.com/chapter/10.1007/978-3-540-89275-5_2.

Jenkins, Tony. “On the Difficulty of Learning to Program.” In Proceedings of the 3rd Annual Conference of the LTSN
Centre for Information and Computer Sciences, 4:53–58. Citeseer, 2002. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.596.9994&rep=rep1&type=pdf.

Jernigan, Will, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters, Irwin Kwan,
Faezeh Bahmani, and Andrew Ko. “A Principled Evaluation for a Principled Idea Garden.” In Visual Languages
and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on, 235–243. IEEE, 2015. http://
ieeexplore.ieee.org/abstract/document/7357222/.

Kafai, Yasmin B., and Yasmin Bettina Kafai. Minds in Play: Computer Game Design as a Context for Children’s Learning.
Routledge, 1995. https://books.google.com/books?
hl=en&lr=&id=Ocyllxa8ZjkC&oi=fnd&pg=PR2&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=0xFjwNEXm7&sig=1-T48emVebB33aQv9EHCxtX3cbA.

Kahn, Ken. “Toontalk TM—an Animated Programming Environment for Children.” Journal of Visual Languages &
Computing 7, no. 2 (1996): 197–217.

Kay, Alan. “The Early History of Smalltalk.” SIGPLAN Not. 28, no. 3 (March 1993): 69–95. doi:10.1145/155360.155364.
Kelleher, Caitlin. “Motivating Programming: Using Storytelling to Make Computer Programming Attractive to Middle

School Girls.” DTIC Document, 2006. http://oai.dtic.mil/oai/oai?
verb=getRecord&metadataPrefix=html&identifier=ADA492489.

Kelleher, Caitlin, and Randy Pausch. “Lowering the Barriers to Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers.” ACM Computing Surveys (CSUR) 37, no. 2 (2005): 83–
137.

Kelleher, Caitlin, Randy Pausch, and Sara Kiesler. “Storytelling Alice Motivates Middle School Girls to Learn Computer
Programming.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1455–
1464. ACM, 2007. http://dl.acm.org/citation.cfm?id=1240844.

Ko, Andrew J., Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, et al.
“The State of the Art in End-User Software Engineering.” ACM Computing Surveys (CSUR) 43, no. 3 (2011): 21.

Ko, Andrew J., Brad A. Myers, and Htet Htet Aung. “Six Learning Barriers in End-User Programming Systems.” In
Visual Languages and Human Centric Computing, 2004 IEEE Symposium on, 199–206. IEEE, 2004. http://
ieeexplore.ieee.org/abstract/document/1372321/.

Krahn, Robert, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and Krzysztof Palacz. “Lively Wiki a Development
Environment for Creating and Sharing Active Web Content.” In Proceedings of the 5th International
Symposium on Wikis and Open Collaboration, 9. ACM, 2009. http://dl.acm.org/citation.cfm?id=1641324.

Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. “A Study of the Difficulties of Novice Programmers.” In
Acm Sigcse Bulletin, 37:14–18. ACM, 2005. http://dl.acm.org/citation.cfm?id=1067453.

Lincke, Jens, Robert Krahn, Dan Ingalls, and Robert Hirschfeld. “Lively Fabrik a Web-Based End-User Programming
Environment.” In 2009 Seventh International Conference on Creating, Connecting and Collaborating through
Computing, 11–19. IEEE, 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5350243.

———. “Lively Fabrik a Web-Based End-User Programming Environment.” In Creating, Connecting and Collaborating
through Computing, 2009. C5’09. Seventh International Conference on, 11–19. IEEE, 2009. http://
ieeexplore.ieee.org/abstract/document/5350243/.

Lincke, Jens, Robert Krahn, Dan Ingalls, Marko Roder, and Robert Hirschfeld. “The Lively PartsBin–A Cloud-Based
Repository for Collaborative Development of Active Web Content.” In System Science (HICSS), 2012 45th
Hawaii International Conference on, 693–701. IEEE, 2012. http://ieeexplore.ieee.org/abstract/document/
6148978/.

Ludolph, Frank, Y.-Y. Chow, Dan Ingalls, Scott Wallace, and Ken Doyle. “The Fabrik Programming Environment.” In
Visual Languages, 1988., IEEE Workshop on, 222–230. IEEE, 1988. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=18032.

Malan, David J., and Henry H. Leitner. “Scratch for Budding Computer Scientists.” ACM SIGCSE Bulletin 39, no. 1
(2007): 223–227.

Maloney, John, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman, and Mitchel Resnick. “Scratch: A Sneak Preview
[Education].” In Creating, Connecting and Collaborating through Computing, 2004. Proceedings. Second
International Conference on, 104–109. IEEE, 2004. http://ieeexplore.ieee.org/abstract/document/1314376/.

Maloney, John H., Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk. Programming by Choice: Urban
Youth Learning Programming with Scratch. Vol. 40. 1. ACM, 2008. http://dl.acm.org/citation.cfm?id=1352260.

Maloney, John H., and Randall B. Smith. “Directness and Liveness in the Morphic User Interface Construction
Environment.” In Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology,
21–28. ACM, 1995. http://dl.acm.org/citation.cfm?id=215636.

Maloney, John, and Walt Disney Imagineering. “An Introduction to Morphic: The Squeak User Interface Framework.”
Squeak: OpenPersonal Computing and Multimedia, 2001. http://thelackthereof.org/docs/library/unsorted/
programming/morphic.final.pdf.

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. “The Scratch Programming
Language and Environment.” ACM Transactions on Computing Education (TOCE) 10, no. 4 (2010): 16.

Mann, Yotam, Jeff Lubow, and Adrian Freed. “The Tactus: A Tangible, Rhythmic Grid Interface Using Found-Objects.”
In NIME, 86–89, 2009. http://www.academia.edu/download/43631493/nm090075.pdf.

Martin, F., G. L. Colobong, and M. Resnick. Tangible Programming with Trains, 1999.
McNerney, Timothy S. “From Turtles to Tangible Programming Bricks: Explorations in Physical Language Design.”

Personal and Ubiquitous Computing 8, no. 5 (2004): 326–337.
———. “Tangible Programming Bricks : An Approach to Making Programming Accessible to Everyone.” Thesis,

Massachusetts Institute of Technology, 2000. http://dspace.mit.edu/handle/1721.1/62094.
Meerbaum-Salant, Orni, Michal Armoni, and Mordechai Ben-Ari. “Learning Computer Science Concepts with Scratch.”

Computer Science Education 23, no. 3 (2013): 239–264.
Moloney, J., Alan Borning, and Bjorn Freeman-Benson. Constraint Technology for User-Interface Construction in

ThingLab II. Vol. 24. 10. ACM, 1989. http://dl.acm.org/citation.cfm?id=74917.
Morgado, Leonel, Maria Cruz, and Ken Kahn. “Radia Perlman—A Pioneer of Young Children Computer Programming.”

Current Developments in Technology-Assisted Education. Proceedings of M-ICTE, 2006, 1903–1908.
Moskal, Barbara, Deborah Lurie, and Stephen Cooper. “Evaluating the Effectiveness of a New Instructional Approach.”

ACM SIGCSE Bulletin 36, no. 1 (2004): 75–79.
Nardi, Bonnie A. A Small Matter of Programming: Perspectives on End User Computing. MIT press, 1993. https://

books.google.com/books?hl=en&lr=&id=0drDRT370eoC&oi=fnd&pg=PR11&dq=nardi
+spreadsheet&ots=eFnU_hPwnu&sig=rdsz4l9pZT7ClYVcAm3mMJiY56g.

Nardi, Bonnie A., and James R. Miller. “An Ethnographic Study of Distributed Problem Solving in Spreadsheet
Development.” In Proceedings of the 1990 ACM Conference on Computer-Supported Cooperative Work, 197–
208. ACM, 1990. http://dl.acm.org/citation.cfm?id=99355.

———. The Spreadsheet Interface: A Basis for End User Programming. Hewlett-Packard Laboratories, 1990. http://
www.miramontes.com/writing/spreadsheet-eup/.

———. “Twinkling Lights and Nested Loops: Distributed Problem Solving and Spreadsheet Development.”
International Journal of Man-Machine Studies 34, no. 2 (1991): 161–184.

Nickerson, Jeffrey. “Visual Programming,” 1994.
Pane, John, and Brad Myers. “Usability Issues in the Design of Novice Programming Systems,” 1996. http://

repository.cmu.edu/isr/820/?utm_source=repository.cmu.edu%2Fisr
%2F820&utm_medium=PDF&utm_campaign=PDFCoverPages.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, 1980.
Pattis, Richard E. Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley & Sons, Inc., 1981.

http://dl.acm.org/citation.cfm?id=539521.
Pears, Arnold, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens Bennedsen, Marie Devlin, and

James Paterson. “A Survey of Literature on the Teaching of Introductory Programming.” ACM SIGCSE Bulletin
39, no. 4 (2007): 204–223.

Perlman, Radia. “Using Computer Technology to Provide a Creative Learning Environment for Preschool Children (PDF
Download Available).” ResearchGate. Accessed January 31, 2017. https://www.researchgate.net/publication/
37596649_Using_Computer_Technology_to_Provide_a_Creative_Learning_Environment_for_Preschool_Childre
n.

Rajala, Teemu, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. “VILLE: A Language-Independent Program
Visualization Tool.” In Proceedings of the Seventh Baltic Sea Conference on Computing Education Research-
Volume 88, 151–159. Australian Computer Society, Inc., 2007. http://dl.acm.org/citation.cfm?id=2449340.

Repenning, Alex. “Agentsheets,” 1993.
———. “Agentsheets: A Tool for Building Domain-Oriented Visual Programming Environments.” In Proceedings of the

INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems, 142–143. ACM, 1993. http://
dl.acm.org/citation.cfm?id=169119.

Repenning, Alexander. “AgentSheets®: An Interactive Simulation Environment with End-User Programmable Agents.”
Interaction, 2000. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2039&rep=rep1&type=pdf.

Repenning, Alexander, Andri Ioannidou, and John Zola. “AgentSheets: End-User Programmable Simulations.” Journal
of Artificial Societies and Social Simulation 3, no. 3 (2000): 351–358.

Repenning, Alexander, and Tamara Sumner. “Agentsheets: A Medium for Creating Domain-Oriented Visual
Languages.” Computer 28, no. 3 (1995): 17–25.

Repenning, Alexander, David Webb, and Andri Ioannidou. “Scalable Game Design and the Development of a
Checklist for Getting Computational Thinking into Public Schools.” In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, 265–269. ACM, 2010. http://dl.acm.org/citation.cfm?
id=1734357.

Resnick, Mitchel. “StarLogo: An Environment for Decentralized Modeling and Decentralized Thinking.” In Conference
Companion on Human Factors in Computing Systems, 11–12. ACM, 1996. http://dl.acm.org/citation.cfm?
id=257095.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon
Millner, et al. “Scratch: Programming for All.” Communications of the ACM 52, no. 11 (2009): 60–67.

Resnick, Mitchel, and Brian Silverman. “Some Reflections on Designing Construction Kits for Kids.” In Proceedings of
the 2005 Conference on Interaction Design and Children, 117–122. ACM, 2005. http://dl.acm.org/citation.cfm?
id=1109556.

Richmond, Barry. “S℡LA: Software for Bringing System Dynamics to the Other 98%.” In Proceedings of the 1985
International Conference of the System Dynamics Society: 1985 International System Dynamics Conference,
706–718, 1985.

Robins, Anthony, Janet Rountree, and Nathan Rountree. “Learning and Teaching Programming: A Review and
Discussion.” Computer Science Education 13, no. 2 (2003): 137–172.

Sloman, Aaron. “Interactions between Philosophy and Artificial Intelligence: The Role of Intuition and Non-Logical
Reasoning in Intelligence.” Artificial Intelligence 2, no. 3–4 (1971): 209–225.

Smith, David Canfield. “Pygmalion: A Creative Programming Environment.” Stanford University, 1975.
Smith, David Canfield, Allen Cypher, and Jim Spohrer. “KidSim: Programming Agents without a Programming

Language.” Communications of the ACM 37, no. 7 (1994): 54–67.
Soloway, Elliot. “Learning to Program= Learning to Construct Mechanisms and Explanations.” Communications of the

ACM 29, no. 9 (1986): 850–858.
Soloway, Elliot, and James C. Spohrer. Studying the Novice Programmer. Psychology Press, 2013. https://

books.google.com/books?
hl=en&lr=&id=vFhEAgAAQBAJ&oi=fnd&pg=PP1&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=W21hSJnEA0&sig=gw8EMZQYc1bCcvqOc27j_5DMJU0.

Sorva, Juha. “Notional Machines and Introductory Programming Education.” ACM Transactions on Computing
Education (TOCE) 13, no. 2 (2013): 8.

———. Visual Program Simulation in Introductory Programming Education. Aalto University, 2012. https://
aaltodoc.aalto.fi/handle/123456789/3534.

Sorva, Juha, Ville Karavirta, and Lauri Malmi. “A Review of Generic Program Visualization Systems for Introductory
Programming Education.” ACM Transactions on Computing Education (TOCE) 13, no. 4 (2013): 15.

Sorva, Juha, Jan Lönnberg, and Lauri Malmi. “Students’ Ways of Experiencing Visual Program Simulation.” Computer
Science Education 23, no. 3 (2013): 207–238.

Sorva, Juha, and Teemu Sirkiä. “UUhistle: A Software Tool for Visual Program Simulation.” In Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, 49–54. ACM, 2010. http://dl.acm.org/
citation.cfm?id=1930471.

Stewart, Ian. “Commuters and Computers: The Intelligent Subway,” 2008.
Suzuki, Hideyuki, and Hiroshi Kato. “AlgoBlock: A Tangible Programming Language, a Tool for Collaborative

Learning.” In Proceedings of 4th European Logo Conference, 297–303, 1993. https://www.researchgate.net/
profile/Hideyuki_Suzuki5/publication/
242383829_Algoblock_a_tangible_programming_language_a_tool_for_collaborative_learning/links/
575f5c8e08ae414b8e5496e3.pdf.

Weinberg, Gerald M. The Psychology of Computer Programming: Silver Anniversary Edition. Anl Sub edition. New
York: Dorset House, 1998.

Williams, Michael D., James D. Hollan, and Albert L. Stevens. “Human Reasoning about a Simple Physical System.” In
Mental Models, edited by D. Gentner and A. Stevens, 131–154, 1983. https://books.google.com/books?
hl=en&lr=&id=G8iYAgAAQBAJ&oi=fnd&pg=PA131&dq=Human+reasoning+about+a+simple+physical
+system.+&ots=aLvRSVGyfA&sig=D0lN5oGnXtymcFXy4wFd-Yy0LN4.

Wing, Jeannette M. “Computational Thinking.” Communications of the ACM 49, no. 3 (2006): 33–35.
———. “Computational Thinking and Thinking about Computing.” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 366, no. 1881 (2008): 3717–3725.
Winslow, Leon E. “Programming Pedagogy—a Psychological Overview.” ACM Sigcse Bulletin 28, no. 3 (1996): 17–22.

Agalianos, Angelos, Geoff Whitty, and Richard Noss. “The Social Shaping of Logo.” Social Studies of Science 36, no. 2
(2006): 241–267.

Auerbach, David. “The Hardest Computer Game of All Time.” Slate, January 24, 2014. http://www.slate.com/articles/
technology/bitwise/2014/01/robot_odyssey_the_hardest_computer_game_of_all_time.html.

Begel, Andrew. “LogoBlocks: A Graphical Programming Language for Interacting with the World.” Electrical
Engineering and Computer Science Department, MIT, Boston, MA, 1996.

Ben-Ari, Mordechai, Roman Bednarik, Ronit Ben-Bassat Levy, Gil Ebel, Andrés Moreno, Niko Myller, and Erkki Sutinen.
“A Decade of Research and Development on Program Animation: The Jeliot Experience.” Journal of Visual
Languages & Computing 22, no. 5 (2011): 375–384.

Borning, Alan. “Graphically Defining New Building Blocks in ThingLab.” Human-Computer Interaction 2, no. 4 (1986):
269–295.

———. “The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory.” ACM
Transactions on Programming Languages and Systems (TOPLAS) 3, no. 4 (1981): 353–387.

———. “ThingLab: A Constraint-Oriented Simulation Laboratory.” XEROX: Palo Alto Research Center, 1979.
———. “ThingLab: An Object-Oriented System for Building Simulations Using Constraints.” In Proceedings of the 5th

International Joint Conference on Artificial Intelligence-Volume 1, 497–498. Morgan Kaufmann Publishers Inc.,
1977. http://dl.acm.org/citation.cfm?id=1624545.

Brennan, Karen, and Mitchel Resnick. “New Frameworks for Studying and Assessing the Development of
Computational Thinking.” In Proceedings of the 2012 Annual Meeting of the American Educational Research
Association, Vancouver, Canada, 1–25, 2012. http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf.

Brusilovsky, Peter, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko, and Philip Miller. “Mini-Languages: A
Way to Learn Programming Principles.” Education and Information Technologies 2, no. 1 (1997): 65–83.

Chalcraft, Adam, and Michael Greene. “Train Sets.” Eureka 53 (1994): 5–12.
Chambers, Craig, and David Ungar. “Customization: Optimizing Compiler Technology for SELF, a Dynamically-Typed

Object-Oriented Programming Language.” In ACM SIGPLAN Notices, 24:146–160. ACM, 1989. http://
dl.acm.org/citation.cfm?id=74831.

Chugh, Ravi. “Prodirect Manipulation: Bidirectional Programming for the Masses.” In Proceedings of the 38th
International Conference on Software Engineering Companion, 781–784. ACM, 2016. http://dl.acm.org/
citation.cfm?id=2889210.

Chugh, Ravi, Brian Hempel, Mitchell Spradlin, and Jacob Albers. “Programmatic and Direct Manipulation, Together at
Last.” In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 341–354. ACM, 2016. http://dl.acm.org/citation.cfm?id=2908103.

Cooper, Stephen, Wanda Dann, and Randy Pausch. “Alice: A 3-D Tool for Introductory Programming Concepts.” In
Journal of Computing Sciences in Colleges, 15:107–116. Consortium for Computing Sciences in Colleges,
2000. http://dl.acm.org/citation.cfm?id=364161.

Cypher, Allen, and David Canfield Smith. “KidSim: End User Programming of Simulations.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 27–34. ACM Press/Addison-Wesley Publishing
Co., 1995. http://dl.acm.org/citation.cfm?id=223908.

Drummond, Brian, and Marilyn Stelzner. “SimKit: A Model-Building Simulation Toolkit.” In AI Tools and Techniques,
edited by Mark H. Richer, 241, 1989. https://books.google.com/books?
hl=en&lr=&id=iMUfTzVuasUC&oi=fnd&pg=PA241&dq=simkit+a+model+building+simulation+toolkit
+drummond&ots=hKigENJHUh&sig=McoA2WtoTj1HJewIWgDeRuisU1c.

Du Boulay, Benedict. “Some Difficulties of Learning to Program.” Journal of Educational Computing Research 2, no. 1
(1986): 57–73.

Gilmore, David J., Karen Pheasey, Jean Underwood, and Geoffrey Underwood. “Learning Graphical Programming: An
Evaluation of KidSim™.” In Human—Computer Interaction, 145–150. Springer, 1995. http://link.springer.com/
chapter/10.1007/978-1-5041-2896-4_24.

Green, Thomas R. G., and Marian Petre. “Usability Analysis of Visual Programming Environments: A ‘cognitive
Dimensions’ Framework.” Journal of Visual Languages & Computing 7, no. 2 (1996): 131–174.

Guo, Philip J. “Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education.” In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education, 579–584. ACM, 2013. http://
dl.acm.org/citation.cfm?id=2445368.

Guzdial, Mark. “Programming Environments for Novices.” Computer Science Education Research 2004 (2004): 127–
154.

Guzdial, Mark, and Elliot Soloway. “Teaching the Nintendo Generation to Program.” Communications of the ACM 45,
no. 4 (2002): 17–21.

Hoc, J.-M. Psychology of Programming. Academic Press, 2014. https://books.google.com/books?
hl=en&lr=&id=NkOjBQAAQBAJ&oi=fnd&pg=PP1&dq=Lowering+the+Barriers+to
+Programming&ots=zT0A2L4u12&sig=mz5NVhAEiyaC_rhqT2cuU179p4k.

Hollan, James D., Edwin L. Hutchins, and Louis Weitzman. “STEAMER: An Interactive Inspectable Simulation-Based
Training System.” AI Magazine 5, no. 2 (1984): 15.

Horn, Michael S., and Robert JK Jacob. “Tangible Programming in the Classroom with Tern.” In CHI’07 Extended
Abstracts on Human Factors in Computing Systems, 1965–1970. ACM, 2007. http://dl.acm.org/citation.cfm?
id=1240933.

Hutchins, Edwin, J. D. Hollan, and D. A. Norman. “Direct Manipulation Interfaces.” Human-Computer Interaction 1,
no. 4 (1985): 311–338.

Ingalls, Dan, Bert Freudenberg, Ted Kaehler Yoshiki Ohshima, and Alan Kay. “Reviving Smalltalk-78.” Accessed
January 17, 2017. http://esug.org/data/ESUG2014/IWST/Papers/iwst2014_Reviving%20Smalltalk-78.pdf.

Ingalls, Dan, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. “Back to the Future: The Story of Squeak, a
Practical Smalltalk Written in Itself.” In ACM SIGPLAN Notices, 32:318–326. ACM, 1997. http://dl.acm.org/
citation.cfm?id=263754.

Ingalls, Dan, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken Doyle. “Fabrik: A Visual Programming
Environment.” In ACM SIGPLAN Notices, 23:176–190. ACM, 1988. http://dl.acm.org/citation.cfm?id=62100.

Ingalls, Daniel HH. “Design Principles behind Smalltalk.” BYTE Magazine 6, no. 8 (1981): 286–298.
———. “The Smalltalk-76 Programming System Design and Implementation.” In Proceedings of the 5th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, 9–16. ACM, 1978. http://dl.acm.org/
citation.cfm?id=512762.

Ingalls, Daniel, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi Mikkonen. “The Lively Kernel a Self-
Supporting System on a Web Page.” In Self-Sustaining Systems, 31–50. Springer, 2008. http://
link.springer.com/chapter/10.1007/978-3-540-89275-5_2.

Jenkins, Tony. “On the Difficulty of Learning to Program.” In Proceedings of the 3rd Annual Conference of the LTSN
Centre for Information and Computer Sciences, 4:53–58. Citeseer, 2002. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.596.9994&rep=rep1&type=pdf.

Jernigan, Will, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters, Irwin Kwan,
Faezeh Bahmani, and Andrew Ko. “A Principled Evaluation for a Principled Idea Garden.” In Visual Languages
and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on, 235–243. IEEE, 2015. http://
ieeexplore.ieee.org/abstract/document/7357222/.

Kafai, Yasmin B., and Yasmin Bettina Kafai. Minds in Play: Computer Game Design as a Context for Children’s Learning.
Routledge, 1995. https://books.google.com/books?
hl=en&lr=&id=Ocyllxa8ZjkC&oi=fnd&pg=PR2&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=0xFjwNEXm7&sig=1-T48emVebB33aQv9EHCxtX3cbA.

Kahn, Ken. “Toontalk TM—an Animated Programming Environment for Children.” Journal of Visual Languages &
Computing 7, no. 2 (1996): 197–217.

Kay, Alan. “The Early History of Smalltalk.” SIGPLAN Not. 28, no. 3 (March 1993): 69–95. doi:10.1145/155360.155364.
Kelleher, Caitlin. “Motivating Programming: Using Storytelling to Make Computer Programming Attractive to Middle

School Girls.” DTIC Document, 2006. http://oai.dtic.mil/oai/oai?
verb=getRecord&metadataPrefix=html&identifier=ADA492489.

Kelleher, Caitlin, and Randy Pausch. “Lowering the Barriers to Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers.” ACM Computing Surveys (CSUR) 37, no. 2 (2005): 83–
137.

Kelleher, Caitlin, Randy Pausch, and Sara Kiesler. “Storytelling Alice Motivates Middle School Girls to Learn Computer
Programming.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1455–
1464. ACM, 2007. http://dl.acm.org/citation.cfm?id=1240844.

Ko, Andrew J., Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, et al.
“The State of the Art in End-User Software Engineering.” ACM Computing Surveys (CSUR) 43, no. 3 (2011): 21.

Ko, Andrew J., Brad A. Myers, and Htet Htet Aung. “Six Learning Barriers in End-User Programming Systems.” In
Visual Languages and Human Centric Computing, 2004 IEEE Symposium on, 199–206. IEEE, 2004. http://
ieeexplore.ieee.org/abstract/document/1372321/.

Krahn, Robert, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and Krzysztof Palacz. “Lively Wiki a Development
Environment for Creating and Sharing Active Web Content.” In Proceedings of the 5th International
Symposium on Wikis and Open Collaboration, 9. ACM, 2009. http://dl.acm.org/citation.cfm?id=1641324.

Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. “A Study of the Difficulties of Novice Programmers.” In
Acm Sigcse Bulletin, 37:14–18. ACM, 2005. http://dl.acm.org/citation.cfm?id=1067453.

Lincke, Jens, Robert Krahn, Dan Ingalls, and Robert Hirschfeld. “Lively Fabrik a Web-Based End-User Programming
Environment.” In 2009 Seventh International Conference on Creating, Connecting and Collaborating through
Computing, 11–19. IEEE, 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5350243.

———. “Lively Fabrik a Web-Based End-User Programming Environment.” In Creating, Connecting and Collaborating
through Computing, 2009. C5’09. Seventh International Conference on, 11–19. IEEE, 2009. http://
ieeexplore.ieee.org/abstract/document/5350243/.

Lincke, Jens, Robert Krahn, Dan Ingalls, Marko Roder, and Robert Hirschfeld. “The Lively PartsBin–A Cloud-Based
Repository for Collaborative Development of Active Web Content.” In System Science (HICSS), 2012 45th
Hawaii International Conference on, 693–701. IEEE, 2012. http://ieeexplore.ieee.org/abstract/document/
6148978/.

Ludolph, Frank, Y.-Y. Chow, Dan Ingalls, Scott Wallace, and Ken Doyle. “The Fabrik Programming Environment.” In
Visual Languages, 1988., IEEE Workshop on, 222–230. IEEE, 1988. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=18032.

Malan, David J., and Henry H. Leitner. “Scratch for Budding Computer Scientists.” ACM SIGCSE Bulletin 39, no. 1
(2007): 223–227.

Maloney, John, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman, and Mitchel Resnick. “Scratch: A Sneak Preview
[Education].” In Creating, Connecting and Collaborating through Computing, 2004. Proceedings. Second
International Conference on, 104–109. IEEE, 2004. http://ieeexplore.ieee.org/abstract/document/1314376/.

Maloney, John H., Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk. Programming by Choice: Urban
Youth Learning Programming with Scratch. Vol. 40. 1. ACM, 2008. http://dl.acm.org/citation.cfm?id=1352260.

Maloney, John H., and Randall B. Smith. “Directness and Liveness in the Morphic User Interface Construction
Environment.” In Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology,
21–28. ACM, 1995. http://dl.acm.org/citation.cfm?id=215636.

Maloney, John, and Walt Disney Imagineering. “An Introduction to Morphic: The Squeak User Interface Framework.”
Squeak: OpenPersonal Computing and Multimedia, 2001. http://thelackthereof.org/docs/library/unsorted/
programming/morphic.final.pdf.

Maloney, John, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. “The Scratch Programming
Language and Environment.” ACM Transactions on Computing Education (TOCE) 10, no. 4 (2010): 16.

Mann, Yotam, Jeff Lubow, and Adrian Freed. “The Tactus: A Tangible, Rhythmic Grid Interface Using Found-Objects.”
In NIME, 86–89, 2009. http://www.academia.edu/download/43631493/nm090075.pdf.

Martin, F., G. L. Colobong, and M. Resnick. Tangible Programming with Trains, 1999.
McNerney, Timothy S. “From Turtles to Tangible Programming Bricks: Explorations in Physical Language Design.”

Personal and Ubiquitous Computing 8, no. 5 (2004): 326–337.
———. “Tangible Programming Bricks : An Approach to Making Programming Accessible to Everyone.” Thesis,

Massachusetts Institute of Technology, 2000. http://dspace.mit.edu/handle/1721.1/62094.
Meerbaum-Salant, Orni, Michal Armoni, and Mordechai Ben-Ari. “Learning Computer Science Concepts with Scratch.”

Computer Science Education 23, no. 3 (2013): 239–264.
Moloney, J., Alan Borning, and Bjorn Freeman-Benson. Constraint Technology for User-Interface Construction in

ThingLab II. Vol. 24. 10. ACM, 1989. http://dl.acm.org/citation.cfm?id=74917.
Morgado, Leonel, Maria Cruz, and Ken Kahn. “Radia Perlman—A Pioneer of Young Children Computer Programming.”

Current Developments in Technology-Assisted Education. Proceedings of M-ICTE, 2006, 1903–1908.
Moskal, Barbara, Deborah Lurie, and Stephen Cooper. “Evaluating the Effectiveness of a New Instructional Approach.”

ACM SIGCSE Bulletin 36, no. 1 (2004): 75–79.
Nardi, Bonnie A. A Small Matter of Programming: Perspectives on End User Computing. MIT press, 1993. https://

books.google.com/books?hl=en&lr=&id=0drDRT370eoC&oi=fnd&pg=PR11&dq=nardi
+spreadsheet&ots=eFnU_hPwnu&sig=rdsz4l9pZT7ClYVcAm3mMJiY56g.

Nardi, Bonnie A., and James R. Miller. “An Ethnographic Study of Distributed Problem Solving in Spreadsheet
Development.” In Proceedings of the 1990 ACM Conference on Computer-Supported Cooperative Work, 197–
208. ACM, 1990. http://dl.acm.org/citation.cfm?id=99355.

———. The Spreadsheet Interface: A Basis for End User Programming. Hewlett-Packard Laboratories, 1990. http://
www.miramontes.com/writing/spreadsheet-eup/.

———. “Twinkling Lights and Nested Loops: Distributed Problem Solving and Spreadsheet Development.”
International Journal of Man-Machine Studies 34, no. 2 (1991): 161–184.

Nickerson, Jeffrey. “Visual Programming,” 1994.
Pane, John, and Brad Myers. “Usability Issues in the Design of Novice Programming Systems,” 1996. http://

repository.cmu.edu/isr/820/?utm_source=repository.cmu.edu%2Fisr
%2F820&utm_medium=PDF&utm_campaign=PDFCoverPages.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, 1980.
Pattis, Richard E. Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley & Sons, Inc., 1981.

http://dl.acm.org/citation.cfm?id=539521.
Pears, Arnold, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens Bennedsen, Marie Devlin, and

James Paterson. “A Survey of Literature on the Teaching of Introductory Programming.” ACM SIGCSE Bulletin
39, no. 4 (2007): 204–223.

Perlman, Radia. “Using Computer Technology to Provide a Creative Learning Environment for Preschool Children (PDF
Download Available).” ResearchGate. Accessed January 31, 2017. https://www.researchgate.net/publication/
37596649_Using_Computer_Technology_to_Provide_a_Creative_Learning_Environment_for_Preschool_Childre
n.

Rajala, Teemu, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. “VILLE: A Language-Independent Program
Visualization Tool.” In Proceedings of the Seventh Baltic Sea Conference on Computing Education Research-
Volume 88, 151–159. Australian Computer Society, Inc., 2007. http://dl.acm.org/citation.cfm?id=2449340.

Repenning, Alex. “Agentsheets,” 1993.
———. “Agentsheets: A Tool for Building Domain-Oriented Visual Programming Environments.” In Proceedings of the

INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems, 142–143. ACM, 1993. http://
dl.acm.org/citation.cfm?id=169119.

Repenning, Alexander. “AgentSheets®: An Interactive Simulation Environment with End-User Programmable Agents.”
Interaction, 2000. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2039&rep=rep1&type=pdf.

Repenning, Alexander, Andri Ioannidou, and John Zola. “AgentSheets: End-User Programmable Simulations.” Journal
of Artificial Societies and Social Simulation 3, no. 3 (2000): 351–358.

Repenning, Alexander, and Tamara Sumner. “Agentsheets: A Medium for Creating Domain-Oriented Visual
Languages.” Computer 28, no. 3 (1995): 17–25.

Repenning, Alexander, David Webb, and Andri Ioannidou. “Scalable Game Design and the Development of a
Checklist for Getting Computational Thinking into Public Schools.” In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education, 265–269. ACM, 2010. http://dl.acm.org/citation.cfm?
id=1734357.

Resnick, Mitchel. “StarLogo: An Environment for Decentralized Modeling and Decentralized Thinking.” In Conference
Companion on Human Factors in Computing Systems, 11–12. ACM, 1996. http://dl.acm.org/citation.cfm?
id=257095.

Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon
Millner, et al. “Scratch: Programming for All.” Communications of the ACM 52, no. 11 (2009): 60–67.

Resnick, Mitchel, and Brian Silverman. “Some Reflections on Designing Construction Kits for Kids.” In Proceedings of
the 2005 Conference on Interaction Design and Children, 117–122. ACM, 2005. http://dl.acm.org/citation.cfm?
id=1109556.

Richmond, Barry. “S℡LA: Software for Bringing System Dynamics to the Other 98%.” In Proceedings of the 1985
International Conference of the System Dynamics Society: 1985 International System Dynamics Conference,
706–718, 1985.

Robins, Anthony, Janet Rountree, and Nathan Rountree. “Learning and Teaching Programming: A Review and
Discussion.” Computer Science Education 13, no. 2 (2003): 137–172.

Sloman, Aaron. “Interactions between Philosophy and Artificial Intelligence: The Role of Intuition and Non-Logical
Reasoning in Intelligence.” Artificial Intelligence 2, no. 3–4 (1971): 209–225.

Smith, David Canfield. “Pygmalion: A Creative Programming Environment.” Stanford University, 1975.
Smith, David Canfield, Allen Cypher, and Jim Spohrer. “KidSim: Programming Agents without a Programming

Language.” Communications of the ACM 37, no. 7 (1994): 54–67.
Soloway, Elliot. “Learning to Program= Learning to Construct Mechanisms and Explanations.” Communications of the

ACM 29, no. 9 (1986): 850–858.
Soloway, Elliot, and James C. Spohrer. Studying the Novice Programmer. Psychology Press, 2013. https://

books.google.com/books?
hl=en&lr=&id=vFhEAgAAQBAJ&oi=fnd&pg=PP1&dq=related:YCK2JCuULtAJ:scholar.google.com/
&ots=W21hSJnEA0&sig=gw8EMZQYc1bCcvqOc27j_5DMJU0.

Sorva, Juha. “Notional Machines and Introductory Programming Education.” ACM Transactions on Computing
Education (TOCE) 13, no. 2 (2013): 8.

———. Visual Program Simulation in Introductory Programming Education. Aalto University, 2012. https://
aaltodoc.aalto.fi/handle/123456789/3534.

Sorva, Juha, Ville Karavirta, and Lauri Malmi. “A Review of Generic Program Visualization Systems for Introductory
Programming Education.” ACM Transactions on Computing Education (TOCE) 13, no. 4 (2013): 15.

Sorva, Juha, Jan Lönnberg, and Lauri Malmi. “Students’ Ways of Experiencing Visual Program Simulation.” Computer
Science Education 23, no. 3 (2013): 207–238.

Sorva, Juha, and Teemu Sirkiä. “UUhistle: A Software Tool for Visual Program Simulation.” In Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, 49–54. ACM, 2010. http://dl.acm.org/
citation.cfm?id=1930471.

Stewart, Ian. “Commuters and Computers: The Intelligent Subway,” 2008.
Suzuki, Hideyuki, and Hiroshi Kato. “AlgoBlock: A Tangible Programming Language, a Tool for Collaborative

Learning.” In Proceedings of 4th European Logo Conference, 297–303, 1993. https://www.researchgate.net/
profile/Hideyuki_Suzuki5/publication/
242383829_Algoblock_a_tangible_programming_language_a_tool_for_collaborative_learning/links/
575f5c8e08ae414b8e5496e3.pdf.

Weinberg, Gerald M. The Psychology of Computer Programming: Silver Anniversary Edition. Anl Sub edition. New
York: Dorset House, 1998.

Williams, Michael D., James D. Hollan, and Albert L. Stevens. “Human Reasoning about a Simple Physical System.” In
Mental Models, edited by D. Gentner and A. Stevens, 131–154, 1983. https://books.google.com/books?
hl=en&lr=&id=G8iYAgAAQBAJ&oi=fnd&pg=PA131&dq=Human+reasoning+about+a+simple+physical
+system.+&ots=aLvRSVGyfA&sig=D0lN5oGnXtymcFXy4wFd-Yy0LN4.

Wing, Jeannette M. “Computational Thinking.” Communications of the ACM 49, no. 3 (2006): 33–35.
———. “Computational Thinking and Thinking about Computing.” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 366, no. 1881 (2008): 3717–3725.
Winslow, Leon E. “Programming Pedagogy—a Psychological Overview.” ACM Sigcse Bulletin 28, no. 3 (1996): 17–22.

