Design Values

This document sets out the guiding design
values for the Gadget project. These are
drawn from the survey of related works, and
articulate the design philosophies and ideas
we think are the most relevant to Gadget.

Five high level design values were distilled
from the review: a quality of world-ness, linked
representation, tactile, personally meaningful,
and directed and undirected activity.

In the next stage of the project—stage 3—we
will design and prototype various ideas, and
draw directly upon the guiding ideas outlined
here.

Chaim Gingold ® Wed Jul 05 2017

Purpose. The Gadget project combines cutting edge ideas from programming
languages and game design to invent new tools for novices learning to code as
well as expert users. It is predicated on the observation that some of the most
powerful ideas in the history of computers—from interface design to programming
languages—have come from making systems more tangible, alive, playful, and
accessible to children. Drawing on influences from Smalltalk to Minecraft, Gadget
seeks to build captivating play experiences that transform users into proficient and
creative computational thinkers. But Gadget is more than a playful tutorial; it aims
to transform the experience of programming itself.

Approach. The project is divided into four stages: survey, articulating design
values, prototyping, and design. In the first stage, we conducted an open-minded
and thorough survey of related work, from Smalltalk to Minecraft. We surveyed 48
different systems, producing one page visual distillations for each. In stage two, five
high level design values were distilled from the review: a quality of world-ness,
linked representation, tactile, personally meaningful, and directed and undirected
activity. In the third stage of the project, we will put these design values into action
by building and testing prototypes that push the envelope in programming
environment design. In the fourth stage we will summarize our learnings in the form
of a design for a new computational world.

Who. The Gadget project builds upon the combined background and expertise of
Dan Ingalls and Chaim Gingold. Among his many seminal contributions to
computing, Dan Ingalls has contributed to making programming more tangible,
alive, and open to creative improvisation (e.g. Squeak and Lively). Chaim Gingold
brings to the project expertise in designing simulations, play experiences, and
creative tools. Recent projects include using simulation toys as book illustrations
(Earth Primer), and investigations into diagrammatic representations of software
(Ph.D. dissertation).

Desian Ve

World

Linked
Representations

Tactile

Meaningful

Directed &
Undirected

eS

World

Compelling and computational worlds draw people in.

Appealing Computational

Appealing worlds draw us in with Some worlds are made of stateful
aliveness, charm, and immersion. Computational elements that interact
- ——_— with one another. Cellular automata
] and CA like systems such as SimCity
and Minecraft are prime examples of
computational worlds that clearly
show their algorithmic machinations.

(< LogicalLabyriath >

Chatienge: Use the AND, OR, and NOT operators 1o
igate Byte tNGUD the werd
€3ch of these operators influences the way your
«

Funs the:
+ The OR operator (1) combines two condiions
20 runs the code # 3t least cne is true.

Soive the chatienge by choosing the operators that wit
. ‘wark best 50 tht Byte collects o the gems and toggles
‘open the switches.

for 4 in 1.6 ¢
moveFormard()
i isOnClosedSwiten &4 is8locked (
topgleswitent)

turateft()

) P Run ity Code
-
l sc for collectGeml) moveForward) turmRIght) @ J A

Spatial Explore, Build, and Inhabit

Some worlds offer concrete spatial Worlds can be places to explore,
relationships between elements, and tinker with, build, and take up
spaces to traverse. More concretely residence in.

fleshed out worlds exhibit a quality
of "naive realism” (diSessa 1985).

Rehearsal-Kernel
Rehearsal-Troupes
Rehearsal-

PerformerWorkshop
Kernel-Objects

reverse

realForm reverse.
displayForm reverse.
self displayNevPicture.
self changed.

»1

2

s 0
[&

6

7

World as Data

When every part of a computational world is concretely manifested it takes on
the quality of world as data. Everything that is part of the world For example,
Glen Chiacchieri's Bubble Sort (2016), Minecraft, Dwarf Fortress, and cellular
automata inspired systems. This also increases the tactility of a system.

g ——

COMPLETED PORTION OF
cous RUCTED AUTOMAT

UNCOMPLETED PART |
OF CONSTRUCTED |
AUTOMATON

|
!

OIRREEBBRFFBBERRE]

CONSTRUCTING ARM

CONSTRUCTION CONTROL
(NOT DRAWN TO SCALE)

CONSTRUCTING UNIT

X ’B'G'B' Noo >\a—n,ﬁ-n *

TAPE CONTROL [H
(NOT DRAWN 7O SCALE) IENEEENENNN N NN
L TAPE

TAPE UNIT

Euler's Seven Bridges of Konigsberg problem set the stage for graph theory,
functioning as an appealing, spatial, and explorable world for an abstract

problem:

KONINGSBERGA

Zoom and Encapsulation

By nesting spaces within one another, complex world can be built up that
encapsulate and interlink multiple representations.

UNTVERSE == === === === o s e mm o e e e e e e e cmcem e me " & File Edit Uiew Special A

| PAPERS---=-s-oooo SCHOOLWORK--== === ---==--- l . T T
| V1111111711 | MATH-=~---- [
| mmmmmemmeees | 22
: : _____ I I System Folder gmpty Folder
———— System Folder
: : PHYS I cs I / / I : } @ 211K in folder 173K available
| I e I ’ SysVersion
N ! ==
I ' ! - Finder System Imagewriter Nnte Pad File Scruphnnk File Elvpbnnrd File
| GAMES------- MAIL------~ |
| \71717] 171717]]
e e |

ASIC STEAM CYCLE

Gallery of Example Projects
A zyﬁu:al ot e oy e e e e R

s PR Y=

Frame-based animation can be used for physics analysis: Fun tutorials and demos:
=z =i

et 1 =
i L | S .
Various simulations and games can aiso be made in Etoys:

= " =T
= . | I

= |

[SR Y —

You can play with thouuundzlaf articles: And mom
{ -
[ES -——~—

Some of the new features in Etoys §
S e rz.._,._,\
L — |-

User frame

System Browser

File name
pauern mawch

Library memo
memo o Scott
Product memo
Tor Frenk
From: Dan opan parts bin windo!
Subject; Fabrik faunch gataway..
Date: March 15,
]

self displayNewPicture.

self changed Thow pin names

show vertex names
grid...

Fabrik is a visual
programming

enter user frame
stara
3tora as..
stora and copy
fiiaOut

Shown above: On-Line Graphical Specification of Computer Procedures (Sutherland 1966), Smalltalk
(1976), Boxer (diSessa 1982), Macintosh (1984), Steamer (Hollan et al. 1984), Robot Odyssey (Wallace
and Grimm 1984), and Fabrik (Ingalls 1988), Squeak/EToys (1996).

Linked Representations

Connecting multiple perspectives helps people find
powerful new ways to see, think, and operate.

Multiple Abstractions Coupled Representations

Multiple representations, such as Coupling multiple representations
overviews, zooming, and layers of helps us to fluidly move between
abstractions, afford multiple them. Begin with the representation
perspectives, ways of thinking, and that makes sense to you, and use it to
pathways to mastery. gain traction in alternate ways of

seeing and thinking.

Frrr—— Canvas
Drag to pan
Scroll wheel to zoom

Click to select function
3-~Click to select
multiple functions

Drag control points
to transform
selected function

Sine((x - 0.84) / 1.35) * 2.74 + 0.43 + Sine(x / 0.21) * 0.69

Schematic

As in a toy or diagram, simplicity . /x"/“ - -

processed 4 Beziers >> (A, B+n, C)

and transparency make =
representations clear and easy to |
absorb A (0,2, 8:(0.75,3),C:2,3)

Elemen 2 X
var canvas = document.createElement(‘canvas') ¢
canvas.width ;“’ﬁ'
canvas.height :’“fm
canvas. style.width = *100%'
var ctx = gﬂyss.gett&ﬁiext('zd');

repeat m

move steps

Fu_rn v degrees

function drawTree(xl, y1, length, angle, n){ &
var x2 = x1 + length * Math.cos(angle+Math.P1/180);
var y2 = y1 - length * Math.sin(anglesMath.PI/180);

ctx.beginPath();
ctx.moveTo(x1, y1);
ctx.lineTo(x2, y2);

ctx.strokeStyle = n < 2 ? "green" : "brown";
ctx.lineWidth = n - 1;
ctx.stroke();

if(n == @) return;

drawTree(x2, y2, length+@.75, angle+27, n-1); o 100
- velue = 27 -

drawTree(x2, y2, length+0.75, angle-57, n-1); & "~ %
g —C——
¥ N - value =57 o

drawTree(350.5, 367, 100, 90, 11)
e w

Hyperliteracy

In literate programming the flow of a programmer’s thoughts is the primary
textual narrative; the details of program logic is subordinate. Literate programs
traditionally look like prose interspersed with program code. Eve, shown
below, exhibits what | describe as hyperliterate programming. Not only are
prose and program interspersed (center column of illustration), but so is the
higher level structure of program architecture (left column). Multiple
representations, at multiple levels of abstraction, of a program are interlinked.

Flappy Eve Flappy Eve

When a player starts the game, we commit a #world, a #iplayer, and some #obstacles.
These will keep all of the essential state of the game. All of this information could have
(Ear L been stored on the world, but for clarity we break the important bits of state into objects

that they effect.

- The #uorld tracks the distance the player has travelled, the current game screen, and
Drawing the high score.

- The #player stores his current y position and (vertical) velocity.

- The obstacles have their (horizontal) offset and gap widths. We put distance on the

world and only keep two obstacles; rather than moving the player through the world, we

Game Logic

keep the player stationary and move the world past the player. When an obstacle goes off
screen, we will wrap it around, update the placement of its gap, and continue on.

Setup

Add a flappy eve and a world for it to flap in:

commit
[#player #self name: "eve” x: 25 y: 50 velocity: 0]
[#world screen: "menu” frame: @ distance: @ best: 0 gravity: -0.061]
[#obstacle gap: 35 offset: 0]
[#obstacle gap: 35 offset: -1]

Next we draw the backdrop of the world. The player and obstacle will be drawn later
based on their current state. Throughout the app we use resources from @bhauman's
flappy bird demo in clojure. Since none of these things change over time, we commit
them once when the player starts the game.

Draw the game world!

search
world = [#world]

commit @browser
world <- [#div style: [user-select: "none” -webkit-user-select: "none” -
moz-user-select: "none”] children:
[#svg #game-window viewBox: "10 © 80 100", width: 480 children:
[#rect x: 0 y: @ width: 100 height: 53 fill: "rgb(112, 197, 206)" sort:

Variable monitor

Some systems allow probes to be installed on variables and expressions.
Sometimes their values can be manipulated. This can be seen as a weak
version of the technique | call world as data; attaching probes to parts of an
opaque computational system means that parts of it become world-like—
directly inspectable and manipulable.

function addone(x){
return x + 1

addone(addone(?ddoneiaddone(1)ll)
S5» @1 2

| Bananas

| Cherries

Pmeapple

o
Ll 38
S

£ 1

Bl
FMM il

Backpropagation

The output of some systems can be directly manipulated, leading to indirect
changes in input. Through back-propagation, input and output are coupled,
establishing new ways for users to think and play with a system. This also
enhances system tactility.

Slider P
var fahrenheit = §‘1, 0 P 100
@ve-t=_3_[
celsius = 5/9 * (fahrenheit - 32)
0556 » —.‘I. (o 100

celsius = -0.556

7.99ms cellO.js P R-Enter
\bol L‘ Outline
Arm Linkage
Shoulder 0.70
Elbow 0.41
Wrist 5.63
<t
Upper Arm
Rotate Shoulder
Limb
X 0.00
Y 0.00
Scale X 3.00
Forearm
X 3.00
Rotate Elbow
Limb
X 0.00
Y 0.00
Scale X 2.00
Hand
X 2.00
Y 0.00
Rotate Wrist

e

Live Syntonic

Aliveness means things are “always Mapping our bodies, egos, or cultures
active and reactive” (Maloney and into a new domain helps us to learn

Smith 1995). and assimilate it.

"FD 58 RT 144

Concrete Manipulate Things and Actions

Example state is always present. It is important that players can
Abstractions like procedures and directly manipulate not just concrete
variables are always accompanied objects, but concretized actions.

by a for example.

Worksheet: Tape Sweepel

[=

|
Ol grm! 112
(rp— |

(36 |]

move steps
ET)

|

—

Tactile Code and Action

Procedures and actions can be made concrete.

t (©) O [Flewr] seriprs (3 en pause) [£])

: l'leuf‘bwme de|'5 >
move steps Test Fleur,

Oui l'leurlavame *I%s bi

couleur vuel couleur:

Non Fleurlavame del%-s I’S

Block languages like Scratch and Etoys represent imperative language
grammar and elements into tactile objects. Blocks can be dragged and
snapped together, can be clicked to run, and visually display run-time status
like errors and execution. This is an aid to comprehension and sharing
(Repenning and Ambach 1996). Visual AgenTalk also allows blocks to be
dropped onto objects:

Worksheel: Tape Sweeper

mmm%um

Foronse ol
By recording the user’s manipulation of the world, tangible code elements can
also be composed by example (Repenning and Ambach 1996), as shown
below in this example from Lively Kernel:

every 1000 milliseconds do

every 60000 milliseconds do

See data flow

When programs are described via diagrams and state data is concretely shown
this creates the effect of being able to see data flow through the system. In
these images from Bret Victor's Media for Thinking

the Unthinkable (2013), a circuit diagram is annotated with wire voltages, and
then the components are replaced with plots of current:

k BTKi 1.2k% TDK; 1.2k%
7y vy

e “LHW

1.2k%
22uF I"i 22uF ‘ll‘)
] ‘ W

|

LYYVIRHEENBA

Steamer is an “interactive inspectable simulation” of a steam ship (Hollan et al.
1984). It is a dynamic and hierarchical “dynamic graphical explanation” of a
non-trivial domain—the propulsion system of a Navy ship, modeled in about
100 different diagrams. (It also includes an authoring tool for the diagrams.)
Spreadsheets function similarly, exposing intermediate computations and
values.

S| =sum(a1:a3)
A B
1 10
. 20
60 30
r=sum()

N o o A WN

Personally Meaningful

You should be able to do something you care about.

Personalizable

It's important that users make and R
engage with things they
authentically care about.

This is a reason why art- and world-
making, as in Logo, Scratch,
Processing, and Minecraft, are such
pervasive and powerful themes—
they offer a direct avenue towards
personally meaningful activity.
(Constructionism harnesses the
appeal of project-making towards
learning outcomes.)

Open ended materials can lend
themselves to appropriation—
fulfilling the novel goals and
purposes of players.

/ 22\
N By 7PN\
i r(j\/\ . v /’l,}//)/

Directed and Undirected

A balance must be found between structure that
guides and opportunities for self-direction.

Gentle On-ramping Progressive Disclosure

New players must be made to feel Gradually introducing new features
welcome, and guided towards affords players an opportunity to
expertise. assimilate them, and allows designers

to thoughtfully stage their
introduction. (e.g. stories, games,
authorship levels, and user frames.)

Interior

Structures Sandhox

Experience can be shaped via Loose parts afford open-ended play,
journeys—obstacle filled stories— improvisation, experimentation, and
and containers like slide decks, reinterpretation. In some systems
reports, posters, and journals. even the explanatory materials can

be disassembled. Robustness fosters
feelings of trust and safety.

fre=rry
widiay
siadh
atefil

