
Design Values

Gadget

Chaim Gingold • Wed Jul 05 2017

This document sets out the guiding design
values for the Gadget project. These are
drawn from the survey of related works, and
articulate the design philosophies and ideas
we think are the most relevant to Gadget.

Five high level design values were distilled
from the review: a quality of world-ness, linked
representation, tactile, personally meaningful,
and directed and undirected activity.

In the next stage of the project—stage 3—we
will design and prototype various ideas, and
draw directly upon the guiding ideas outlined
here.

2

Gadget
Purpose. The Gadget project combines cutting edge ideas from programming
languages and game design to invent new tools for novices learning to code as
well as expert users. It is predicated on the observation that some of the most
powerful ideas in the history of computers—from interface design to programming
languages—have come from making systems more tangible, alive, playful, and
accessible to children. Drawing on influences from Smalltalk to Minecraft, Gadget
seeks to build captivating play experiences that transform users into proficient and
creative computational thinkers. But Gadget is more than a playful tutorial; it aims
to transform the experience of programming itself.

Approach. The project is divided into four stages: survey, articulating design
values, prototyping, and design. In the first stage, we conducted an open-minded
and thorough survey of related work, from Smalltalk to Minecraft. We surveyed 48
different systems, producing one page visual distillations for each. In stage two, five
high level design values were distilled from the review: a quality of world-ness,
linked representation, tactile, personally meaningful, and directed and undirected
activity. In the third stage of the project, we will put these design values into action
by building and testing prototypes that push the envelope in programming
environment design. In the fourth stage we will summarize our learnings in the form
of a design for a new computational world.

Who. The Gadget project builds upon the combined background and expertise of
Dan Ingalls and Chaim Gingold. Among his many seminal contributions to
computing, Dan Ingalls has contributed to making programming more tangible,
alive, and open to creative improvisation (e.g. Squeak and Lively). Chaim Gingold
brings to the project expertise in designing simulations, play experiences, and
creative tools. Recent projects include using simulation toys as book illustrations
(Earth Primer), and investigations into diagrammatic representations of software
(Ph.D. dissertation).

1
2
3
4

Gadget
World
Linked
Representations
Tactile
Meaningful
Directed &
Undirected

Design Values

Appealing

Compelling and computational worlds draw people in.

Appealing worlds draw us in with
aliveness, charm, and immersion.

Some worlds offer concrete spatial
relationships between elements, and
spaces to traverse. More concretely
fleshed out worlds exhibit a quality
of “naive realism” (diSessa 1985).

Spatial

Computational
Some worlds are made of stateful
computational elements that interact
with one another. Cellular automata
and CA like systems such as SimCity
and Minecraft are prime examples of
computational worlds that clearly
show their algorithmic machinations.

Worlds can be places to explore,
tinker with, build, and take up
residence in.

Explore, Build, and Inhabit

World

Euler’s Seven Bridges of Königsberg problem set the stage for graph theory,
functioning as an appealing, spatial, and explorable world for an abstract
problem:

World as Data

When every part of a computational world is concretely manifested it takes on
the quality of world as data. Everything that is part of the world For example,
Glen Chiacchieri’s Bubble Sort (2016), Minecraft, Dwarf Fortress, and cellular
automata inspired systems. This also increases the tactility of a system.

Zoom and Encapsulation

By nesting spaces within one another, complex world can be built up that
encapsulate and interlink multiple representations.

Shown above: On-Line Graphical Specification of Computer Procedures (Sutherland 1966), Smalltalk
(1976), Boxer (diSessa 1982), Macintosh (1984), Steamer (Hollan et al. 1984), Robot Odyssey (Wallace
and Grimm 1984), and Fabrik (Ingalls 1988), Squeak/EToys (1996).

User frame

Appealing

Multiple representations, such as
overviews, zooming, and layers of
abstractions, afford multiple
perspectives, ways of thinking, and
pathways to mastery.

As in a toy or diagram, simplicity
and transparency make
representations clear and easy to
absorb.

Schematic

Coupled Representations
Coupling multiple representations
helps us to fluidly move between
them. Begin with the representation
that makes sense to you, and use it to
gain traction in alternate ways of
seeing and thinking.

Connecting multiple perspectives helps people find
powerful new ways to see, think, and operate.

Linked Representations

Multiple Abstractions

PTLScan()

FireAnalysis()

DecROGMem()
DecTrafficMem()

MapScan()

Pollution &
Land Value 12

Population Density
PopDenScan()

14

Decay Traffic
& Rate of Growth
Maps

10 Power Scan
DoPowerScan()11

–

Police St.
PoliceMap[]

1:8

Smooth•3

Smooth•2

Com.
Rate

ComRate[]

1:8

Power
PowerMap[]

1-bit

Terrain
TerrainMem[]

1:4

8 bit
8 bit

16 bit

16 or 1 bit

15 × 13Small1:8
30 × 25
60 × 50

120 × 100

Quarter
Half
Full

1:4
1:2
1:1

+

+

Smooth•1

Smooth•3

–

–

Map Data Flow

Fire St.
FireStMap[]

1:8

visible to player

Smooth•3

Fire
Radius

FireRate[]

1:8

Crime
CrimeMem[]

1:2

Land
Value

LandValueMem[]

1:2

Pollution
PollutionMem[]

1:2

Traffic
Density

TrfDensity[]

1:2

Rate of
Growth

RateOGMem[]

1:8

Map
Map[]

16-bit tiles

Pop.
Density

PopDensity[]

1:2

Police
Radius

PoliceMapEffect[]

1:8

13 Police Coverage
& Crime
CrimeScan()

Fire
Coverage15

Map
Scan

1...8

CrimeAverage

City Center
CCx, CCy

Pollution Max

PolMaxX, PolMaxY

PollutionAvg

Avg. Land Value

LVAverage

+

+

–

+

+

+

Hyperliteracy

In literate programming the flow of a programmer’s thoughts is the primary
textual narrative; the details of program logic is subordinate. Literate programs
traditionally look like prose interspersed with program code. Eve, shown
below, exhibits what I describe as hyperliterate programming. Not only are
prose and program interspersed (center column of illustration), but so is the
higher level structure of program architecture (left column). Multiple
representations, at multiple levels of abstraction, of a program are interlinked.

Variable monitor

Some systems allow probes to be installed on variables and expressions.
Sometimes their values can be manipulated. This can be seen as a weak
version of the technique I call world as data; attaching probes to parts of an
opaque computational system means that parts of it become world-like—
directly inspectable and manipulable.

Backpropagation

The output of some systems can be directly manipulated, leading to indirect
changes in input. Through back-propagation, input and output are coupled,
establishing new ways for users to think and play with a system. This also
enhances system tactility.

Live

Vivid tangible worlds turn abstract ideas into
concrete and familiar things.

Aliveness means things are “always
active and reactive” (Maloney and
Smith 1995).

Example state is always present.
Abstractions like procedures and
variables are always accompanied
by a for example.

Concrete

Syntonic
Mapping our bodies, egos, or cultures
into a new domain helps us to learn
and assimilate it.

It is important that players can
directly manipulate not just concrete
objects, but concretized actions.

Manipulate Things and Actions

Tactile

Tactile Code and Action

Procedures and actions can be made concrete.

Block languages like Scratch and Etoys represent imperative language
grammar and elements into tactile objects. Blocks can be dragged and
snapped together, can be clicked to run, and visually display run-time status
like errors and execution. This is an aid to comprehension and sharing
(Repenning and Ambach 1996). Visual AgenTalk also allows blocks to be
dropped onto objects:

By recording the user’s manipulation of the world, tangible code elements can
also be composed by example (Repenning and Ambach 1996), as shown
below in this example from Lively Kernel:

See data flow

When programs are described via diagrams and state data is concretely shown
this creates the effect of being able to see data flow through the system. In
these images from Bret Victor’s Media for Thinking
the Unthinkable (2013), a circuit diagram is annotated with wire voltages, and
then the components are replaced with plots of current:

Steamer is an “interactive inspectable simulation” of a steam ship (Hollan et al.
1984). It is a dynamic and hierarchical “dynamic graphical explanation” of a
non-trivial domain—the propulsion system of a Navy ship, modeled in about
100 different diagrams. (It also includes an authoring tool for the diagrams.)
Spreadsheets function similarly, exposing intermediate computations and
values.

Appealing

It’s important that users make and
engage with things they
authentically care about.

This is a reason why art- and world-
making, as in Logo, Scratch,
Processing, and Minecraft, are such
pervasive and powerful themes—
they offer a direct avenue towards
personally meaningful activity.
(Constructionism harnesses the
appeal of project-making towards
learning outcomes.)

Open ended materials can lend
themselves to appropriation—
fulfilling the novel goals and
purposes of players.

You should be able to do something you care about.

Personally Meaningful

Personalizable

Appealing

New players must be made to feel
welcome, and guided towards
expertise.

Experience can be shaped via
journeys—obstacle filled stories—
and containers like slide decks,
reports, posters, and journals.

Structures

Progressive Disclosure
Gradually introducing new features
affords players an opportunity to
assimilate them, and allows designers
to thoughtfully stage their
introduction. (e.g. stories, games,
authorship levels, and user frames.)

Loose parts afford open-ended play,
improvisation, experimentation, and
reinterpretation. In some systems
even the explanatory materials can
be disassembled. Robustness fosters
feelings of trust and safety.

Sandbox

A balance must be found between structure that
guides and opportunities for self-direction.

Directed and Undirected

Gentle On-ramping

